Clever Geek Handbook
📜 ⬆️ ⬇️

Minkowski hypothesis

The Minkowski hypothesis is an assumption according to which for any latticeL⊂Rn {\ displaystyle L \ subset \ mathbb {R} ^ {n}} {\ displaystyle L \ subset \ mathbb {R} ^ {n}} with qualifier2n {\ displaystyle 2 ^ {n}} 2 ^ {n} and any vectorv=(vone,v2,..,vn) {\ displaystyle v = (v_ {1}, v_ {2}, .., v_ {n})} {\ displaystyle v = (v_ {1}, v_ {2}, .., v_ {n})} there is an elementx=(xone,x2,..,xn)∈L {\ displaystyle x = (x_ {1}, x_ {2}, .., x_ {n}) \ in L} {\ displaystyle x = (x_ {1}, x_ {2}, .., x_ {n}) \ in L} such that

|(xone-vone)(x2-v2)...(xn-vn)|⩽one{\ displaystyle | (x_ {1} -v_ {1}) (x_ {2} -v_ {2}) \ dots (x_ {n} -v_ {n}) | \ leqslant 1} {\ displaystyle | (x_ {1} -v_ {1}) (x_ {2} -v_ {2}) \ dots (x_ {n} -v_ {n}) | \ leqslant 1}
  • Happeningn=2 {\ displaystyle n = 2} n = 2 this hypothesis was proved by Minkowski [1]
  • Atn=3 {\ displaystyle n = 3} n = 3 Minkowski’s hypothesis was proved by Remak [2]
  • Atn=four {\ displaystyle n = 4} n = 4 Minkowski hypothesis proved by Dyson [3]
  • Atn=five {\ displaystyle n = 5} n = 5 Minkowski hypothesis proved Skubenko [4]

Literature

  • Cassels, J. V. S, Introduction to Number Geometry , trans. from English., M., 1955;
  1. ↑ Minkowski, Hermann . Geometrie der Zahlen (Neopr.) . - Leipzig-Berlin: RG Teubner, 1910.
  2. ↑ Remak, R., Verallgemeinerung eines Minkowskischen Satzes, I, II. Math. Z., 17 (1923), 1-34; 18 (1924), 173-200.
  3. ↑ Dyson, FJ, On the product of four non-homogeneous forms. Ann. of Math. B), 49 A948), 82-109.
  4. ↑ Skubenko, BF A new variant of the proof of the inhomogeneous Minkowski conjecture for $ n = 5 $. (Russian) Number theory, mathematical analysis and their applications. Trudy Mat. Inst. Steklov. 142 (1976), 240--253, 271
Source - https://ru.wikipedia.org/w/index.php?title= Minkowski hypothesis&oldid = 101057531


More articles:

  • Spontaneous Division
  • Karthago
  • TRC Otradny
  • 1965 South African Grand Prix
  • Populism
  • Pomaznev, Mikhail Trofimovich
  • Brooklyn
  • Iberian Conceptual Art
  • Worst Enemy
  • Tolyatti

All articles

Clever Geek | 2019