Clever Geek Handbook
📜 ⬆️ ⬇️

Additive mapping

Homomorphismf:Rone→R2 {\ displaystyle f: R_ {1} \ to R_ {2}} {\ displaystyle f: R_ {1} \ to R_ {2}} additive ring groupRone {\ displaystyle R_ {1}} R_ {1} to additive ring groupR2 {\ displaystyle R_ {2}} R_ {2} called additive ring displayRone {\ displaystyle R_ {1}} R_ {1} into the ringR2 {\ displaystyle R_ {2}} R_ {2} .

According to the definition of an additive group homomorphism, the additive mappingf {\ displaystyle f} f ringsRone {\ displaystyle R_ {1}} R_ {1} into the ringR2 {\ displaystyle R_ {2}} R_ {2} satisfies the property:f(a+b)=f(a)+f(b) {\ displaystyle f (a + b) = f (a) + f (b)} f (a + b) = f (a) + f (b)

It is not necessary that the additive mapping of the ring preserve the product.

If af {\ displaystyle f} f andg {\ displaystyle g} g additive mapping, then mappingf+g {\ displaystyle f + g} f + g additively. Similarly, adjectively mappingafb {\ displaystyle afb} {\ displaystyle afb} , if aa,b∈R2 {\ displaystyle a, b \ in R_ {2}} {\ displaystyle a, b \ in R_ {2}} .

Additive body mapping

Let beD {\ displaystyle D} D - body characteristics0 {\ displaystyle 0} {\displaystyle 0} . Additive mapping

f:D→D{\ displaystyle f: D \ to D} {\displaystyle f:D\to D}

bodiesD {\ displaystyle D} D can be represented as

f(x)=Σs((s)0fx(s)onef){\ displaystyle f (x) = {\ sum _ {s}} ({} _ {(s) 0} f \ x \ {} _ {(s) 1} f)} {\displaystyle f(x)={\sum _{s}}({}_{(s)0}f\ x\ {}_{(s)1}f)}

The number of items depends on the choice of function.f {\ displaystyle f} f . Expressions(s)0f,(s)onef∈D {\ displaystyle {} _ {(s) 0} f, {} _ {(s) 1} f \ in D} {\displaystyle {}_{(s)0}f,{}_{(s)1}f\in D} are called additive mapping components.


Source - https://ru.wikipedia.org/w/index.php?title=Additio_a_discount_oldid=70686587


More articles:

  • South Bridge (Riga)
  • Icezone-Music
  • Matvievskaya, Galina Pavlovna
  • Declan
  • Oreshnikov, Viktor Mikhailovich
  • Taekback (city)
  • Lokharn
  • Gracie, Ortwin
  • Battle in the Dunes
  • Novikov, Dmitry Georgievich

All articles

Clever Geek | 2019