Clever Geek Handbook
📜 ⬆️ ⬇️

Bernoulli Inequality

Bernoulli's inequality states: ifx≥-one {\ displaystyle x \ geq -1} x \ geq -1 then

(one+x)n≥one+nx{\ displaystyle (1 + x) ^ {n} \ geq 1 + nx} (1 + x) ^ n \ geq 1 + nx for alln∈N0. {\ displaystyle n \ in \ mathbb {N} _ {0}.} n \ in \ mathbb {N} _0.

Proof

The proof of the inequality is carried out by the method of mathematical induction on n . For n = 1, the inequality is obviously true. Suppose that it is true for n , we prove its validity for n +1:

(one+x)n+one=(one+x)(one+x)n≥(one+x)(one+nx)≥(one+nx)+x=one+(n+one)x{\ displaystyle (1 + x) ^ {n + 1} = (1 + x) (1 + x) ^ {n} \ geq (1 + x) (1 + nx) \ geq (1 + nx) + x = 1 + (n + 1) x}   ,

t.d.

Generalized Bernoulli inequality

The generalized Bernoulli inequality claims that withx>-one {\ displaystyle x> -1 \! \}   andn∈R {\ displaystyle n \ in \ mathbb {R}}   :

  • if an∈(-∞;0)∪(one;+∞) {\ displaystyle n \ in (- \ infty; 0) \ cup (1; + \ infty)}   then(one+x)n≥one+nx {\ displaystyle (1 + x) ^ {n} \ geq 1 + nx}  
  • if an∈(0;one) {\ displaystyle n \ in (0; 1) \! \}   then(one+x)n≤one+nx {\ displaystyle (1 + x) ^ {n} \ leq 1 + nx}  
  • while equality is achieved in two cases:[∀x≠-one,n=0,n=one∀n≠0,x=0 {\ displaystyle \ left [{\ begin {matrix} \ forall x \ neq -1, n = 0, n = 1 \\\ forall n \ neq 0, x = 0 \ end {matrix}} \ right.}  
Evidence

Considerf(x)=(one+x)n-nx {\ displaystyle f (x) = (1 + x) ^ {n} -nx \! \}   , andx>-one,n≠0,n≠one {\ displaystyle x> -1, n \ neq 0, n \ neq 1 \! \}   .
Derivativef′(x)=n(one+x)n-one-n=0 {\ displaystyle f '(x) = n (1 + x) ^ {n-1} -n = 0 \! \}   atx=x0=0 {\ displaystyle x = x_ {0} = 0 \! \}   , insofar asn≠0 {\ displaystyle n \ neq 0 \! \}   .
Functionf {\ displaystyle f \! \}   twice differentiable in a punctured neighborhood of a pointx0 {\ displaystyle x_ {0} \! \}   . thereforef″(x)=n(n-one)(one+x)n-2 {\ displaystyle f '' (x) = n (n-1) (1 + x) ^ {n-2} \! \}   . We get:

  • f″(x)>0{\ displaystyle f '' (x)> 0 \! \}   ⇒f(x)≥f(x0) {\ displaystyle f (x) \ geq f (x_ {0}) \! \}   atn∈(-∞;0)∪(one;+∞) {\ displaystyle n \ in (- \ infty; 0) \ cup (1; + \ infty)}  
  • f″(x)<0{\ displaystyle f '' (x) <0 \! \}   ⇒f(x)≤f(x0) {\ displaystyle f (x) \ leq f (x_ {0}) \! \}   atn∈(0;one) {\ displaystyle n \ in (0; 1) \! \}  

Function valuef(x0)=one {\ displaystyle f (x_ {0}) = 1 \! \}   therefore, the following statements are true:

  • if an∈(-∞;0)∪[one;+∞) {\ displaystyle n \ in (- \ infty; 0) \ cup [1; + \ infty)}   then(one+x)n≥one+nx {\ displaystyle (1 + x) ^ {n} \ geq 1 + nx}  
  • if an∈(0;one] {\ displaystyle n \ in (0; 1] \! \}   then(one+x)n≤one+nx {\ displaystyle (1 + x) ^ {n} \ leq 1 + nx}  

It is easy to see that with the corresponding valuesx0=0 {\ displaystyle x_ {0} = 0 \! \}   orn=0,n=one {\ displaystyle n = 0, n = 1 \! \}   functionf(x)=f(x0) {\ displaystyle f (x) = f (x_ {0}) \! \}   . Moreover, in the final inequality, the restrictions onn {\ displaystyle n \! \}   defined at the beginning of the proof, since equality is fulfilled for them. ■

Notes

  • Inequality is also true forx≥-2 {\ displaystyle x \ geq -2}   (atn∈N0 {\ displaystyle n \ in \ mathbb {N} _ {0}}   ) Proof for the casex∈[-2,-one) {\ displaystyle x \ in \ left [-2, -1 \ right)}   can also be carried out by mathematical induction.

(one+x)n+one+(one+x)n=(one+x)n(one+x+one)≥(one+nx)(one+x+one)=one+(n+one)x+one+nx(one+x){\ displaystyle (1 + x) ^ {n + 1} + (1 + x) ^ {n} = (1 + x) ^ {n} (1 + x + 1) \ geq (1 + nx) (1 + x + 1) = 1 + (n + 1) x + 1 + nx (1 + x)}  

Since whenx∈[-2,-one) {\ displaystyle x \ in \ left [-2, -1 \ right)}  (one+x)n≤one≤one+nx(one+x) {\ displaystyle (1 + x) ^ {n} \ leq 1 \ leq 1 + nx (1 + x)}   then(one+x)n+one≥one+(n+one)x {\ displaystyle (1 + x) ^ {n + 1} \ geq 1+ (n + 1) x}  

Source - https://ru.wikipedia.org/w/index.php?title=Bernoulli Inequality&oldid = 86359834


More articles:

  • TV of Tomorrow
  • Shrimp Farm
  • Volostnikovka (Ulyanovsk district)
  • Ryndovsky, Grigory Semenovich
  • Ryleev
  • Ruche, Jean Antoine
  • 1st Guards Detached Battalion
  • Heisei
  • Ruffer, Jozef
  • Massacre in Port Arthur

All articles

Clever Geek | 2019