Frullani's formulas relate to finding improper Riemann integrals of the form:
- {\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx}

to which, with the help of elementary transformation, differentiation, and integration with respect to a parameter, many other improper integrals can be reduced.
Frullani's First Formula
If {\ displaystyle f (x) \ in C [0, + \ infty) \}
and {\ displaystyle \ \ forall A> 0 \ \ exists \ int \ limits _ {A} ^ {\ infty} {\ frac {f (x)} {x}} \, dx}
, then the following formula is valid:
- {\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = f (0) \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)} \ \ (\ alpha> 0, \ beta> 0) \}

- Evidence:
- {\ displaystyle \ lim \ limits _ {A \ to +0} {\ Biggl (} {\ int \ limits _ {A} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x )} {x}} \, dx} {\ Biggr)} = \ lim \ limits _ {A \ to +0} {\ Biggl (} {{\ int \ limits _ {A} ^ {\ infty} {\ frac {f (\ alpha x)} {x}} \, dx} - {\ int \ limits _ {A} ^ {\ infty} {\ frac {f (\ beta x)} {x}} \, dx }} {\ Biggr)} =}

- {\ displaystyle = \ left \ {\ forall A> 0 \ \ exists \ int \ limits _ {A} ^ {\ infty} {\ frac {f (x)} {x}} \, dx \ \ Rightarrow {\ int \ limits _ {A} ^ {\ infty} {\ frac {f (x)} {x}} \, dx = F (\ infty) -F (A)} \ Rightarrow {\ int \ limits _ {A } ^ {\ infty} {\ frac {f (\ alpha x)} {x}} \, dx = \ int \ limits _ {\ alpha A} ^ {\ infty} {\ frac {f (x)} { x}} \, dx} = F (\ infty) -F (\ alpha A) \ right \}}
[one] {\ displaystyle =} 
- {\ displaystyle = \ lim \ limits _ {A \ to +0} {\ Biggl (} F (\ infty) -F (\ alpha A) -F (\ infty) + F (\ beta A) {\ Biggr) } = \ lim \ limits _ {A \ to +0} {\ Biggl (} F (\ beta A) -F (\ alpha A) {\ Biggr)} = \ lim \ limits _ {A \ to +0} {\ Biggl (} \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {f (Ax)} {x}} \, dx {\ Biggr)} =}

- {\ displaystyle = \ lim \ limits _ {A \ to +0} {\ Biggl (} f (A \ xi) \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {1} {x} } \, dx {\ Biggr)}}
[2] {\ displaystyle = \ lim \ limits _ {A \ to +0} {\ Biggl (} f (A \ xi) {\ biggl (} \ ln (\ beta) - \ ln (\ alpha) {\ biggr)} {\ Biggr)}}
[3] {\ displaystyle = \ lim \ limits _ {A \ to +0} {\ biggl (} f (A \ xi) {\ biggr)} \ ln {\ biggl (} {\ frac {\ beta} {\ alpha} } {\ biggr)} =} 
- {\ displaystyle = \ left \ {\ xi \ in [\ alpha, \ beta] \ Rightarrow \ lim \ limits _ {A \ to +0} {A \ xi} = 0, f (x) \ in C [0 , + \ infty) \ Rightarrow \ lim \ limits _ {A \ to +0} {f (A \ xi) = f (0)} \ right \} = f (0) \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)}.}
Frullani's Second Formula
If {\ displaystyle f (x) \ in C [0, + \ infty)} and {\ displaystyle \ exists \ lim \ limits _ {x \ to + \ infty} f (x) <+ \ infty \} then the following formula is valid:
- {\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = (f (0) -f ( + \ infty)) \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)} \ \ (\ alpha> 0, \ beta> 0)}
- Evidence:
- {\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = \ lim \ limits _ {\ epsilon \ to 0, \ Delta \ to \ infty} {\ Biggl (} \ int \ limits _ {\ epsilon} ^ {A} {\ frac {f (\ alpha x) -f (\ beta x)} {x} } \, dx + \ int \ limits _ {A} ^ {\ Delta} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx {\ Biggr)}} [four] {\ displaystyle =}
- {\ displaystyle = \ left \ {\ rho {\ bigl (} \ epsilon, A {\ bigr)} <\ infty, {\ frac {f (x)} {x}} \ in C [\ epsilon, A] \ Rightarrow \ int \ limits _ {\ epsilon} ^ {A} {\ frac {f (x)} {x}} \, dx = F (A) -F (\ epsilon) \ Rightarrow \ int \ limits _ { \ epsilon} ^ {A} {\ frac {f (\ alpha x)} {x}} \, dx = F (\ alpha A) -F (\ alpha \ epsilon) \ right \}} [one] {\ displaystyle =}
- {\ displaystyle = \ lim \ limits _ {\ epsilon \ to 0, \ Delta \ to + \ infty} {\ Biggl (} F (\ alpha A) -F (\ alpha \ epsilon) -F (\ beta A) + F (\ beta \ epsilon) + \ int \ limits _ {A} ^ {\ Delta} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx {\ Biggr )} =}
- {\ displaystyle = \ left \ {\ rho {\ bigl (} A, \ Delta {\ bigr)} <\ infty, {\ frac {f (x)} {x}} \ in C [A, \ Delta] \ Rightarrow \ int \ limits _ {A} ^ {\ Delta} {\ frac {f (x)} {x}} \, dx = F (\ Delta) -F (A) \ Rightarrow \ int \ limits _ { A} ^ {\ Delta} {\ frac {f (\ alpha x)} {x}} \, dx = F (\ alpha \ Delta) -F (\ alpha A) \ right \} =}
- {\ displaystyle = \ lim \ limits _ {\ epsilon \ to +0, \ Delta \ to + \ infty} {\ Biggl (} F (\ alpha A) -F (\ alpha \ epsilon) -F (\ beta A ) + F (\ beta \ epsilon) + F (\ alpha \ Delta) -F (\ alpha A) -F (\ beta \ Delta) + F (\ beta A) {\ Biggr)} =}
- {\ displaystyle = \ lim \ limits _ {\ epsilon \ to +0} {\ biggl (} F (\ beta \ epsilon) -F (\ alpha \ epsilon) {\ biggr)} - \ lim \ limits _ {\ Delta \ to + \ infty} {\ biggl (} F (\ beta \ Delta) -F (\ alpha \ Delta) {\ biggr)} = \ lim \ limits _ {\ epsilon \ to +0} {\ Biggl ( } \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {f (\ epsilon x)} {x}} \, dx {\ Biggr)} - \ lim \ limits _ {\ Delta \ to + \ infty} {\ Biggl (} \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {f (\ Delta x)} {x}} \, dx {\ Biggr)} =}
- {\ displaystyle = \ lim \ limits _ {\ epsilon \ to +0} {\ Biggl (} f (\ epsilon \ eta) \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {1} { x}} \, dx {\ Biggr)} - \ lim \ limits _ {\ Delta \ to + \ infty} {\ Biggl (} f (\ Delta \ mu) \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {1} {x}} \, dx {\ Biggr)}} [2] {\ displaystyle = {\ biggl (} \ lim \ limits _ {\ epsilon \ to +0} f (\ epsilon \ eta) - \ lim \ limits _ {\ Delta \ to + \ infty} f (\ Delta \ mu ) {\ biggr)} {\ biggl (} \ ln (\ beta) - \ ln (\ alpha) {\ biggr)}} [3] {\ displaystyle =}
- {\ displaystyle = \ left \ {\ eta, \ mu \ in [\ alpha, \ beta] \ Rightarrow \ lim \ limits _ {\ epsilon \ to +0} \ epsilon \ eta = 0, \ lim \ limits _ { \ Delta \ to + \ infty} \ Delta \ mu = + \ infty, f (x) \ in C [0, + \ infty] \ Rightarrow \ lim \ limits _ {\ epsilon \ to +0} f (\ epsilon \ eta) = f (0), \ lim \ limits _ {\ Delta \ to + \ infty} f (\ Delta \ mu) = f (+ \ infty) \ right \} =}
- {\ displaystyle = {\ biggl (} f (0) -f (+ \ infty) {\ biggr)} \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)}. }
Frullani's Third Formula
If {\ displaystyle f (x) \ in C (0, + \ infty) \} and {\ displaystyle \ \ forall A> 0 \ \ exists \ int \ limits _ {0} ^ {A} {\ frac {f (x)} {x}} \, dx} and {\ displaystyle \ exists \ lim \ limits _ {x \ to + \ infty} f (x) <+ \ infty \} then the following formula is valid:
- {\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = f (+ \ infty) \ ln {\ biggl (} {\ frac {\ alpha} {\ beta}} {\ biggr)} \ \ (\ alpha> 0, \ beta> 0) \}