Clever Geek Handbook
📜 ⬆️ ⬇️

Frullani Formulas

Frullani's formulas relate to finding improper Riemann integrals of the form:

∫0∞f(αx)-f(βx)xdx{\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx} {\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx}

to which, with the help of elementary transformation, differentiation, and integration with respect to a parameter, many other improper integrals can be reduced.

Content

  • 1 Frullani Formulas
    • 1.1 The first Frullani formula
    • 1.2 The second Frullani formula
    • 1.3 Third Frullani Formula
  • 2 Examples
  • 3 notes
  • 4 See also
  • 5 Links

Frullani Formulas

Frullani's First Formula

Iff(x)∈C[0,+∞) {\ displaystyle f (x) \ in C [0, + \ infty) \} {\displaystyle f(x)\in C[0,+\infty )\ } and∀A>0∃∫A∞f(x)xdx {\ displaystyle \ \ forall A> 0 \ \ exists \ int \ limits _ {A} ^ {\ infty} {\ frac {f (x)} {x}} \, dx} {\displaystyle \ \forall A>0\ \exists \int \limits _{A}^{\infty }{\frac {f(x)}{x}}\,dx} , then the following formula is valid:

∫0∞f(αx)-f(βx)xdx=f(0)ln⁡(βα)(α>0,β>0){\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = f (0) \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)} \ \ (\ alpha> 0, \ beta> 0) \} {\displaystyle \int \limits _{0}^{\infty }{\frac {f(\alpha x)-f(\beta x)}{x}}\,dx=f(0)\ln {\biggl (}{\frac {\beta }{\alpha }}{\biggr )}\ \ (\alpha >0,\beta >0)\ }
Evidence:
limA→+0(∫A∞f(αx)-f(βx)xdx)=limA→+0(∫A∞f(αx)xdx-∫A∞f(βx)xdx)={\ displaystyle \ lim \ limits _ {A \ to +0} {\ Biggl (} {\ int \ limits _ {A} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x )} {x}} \, dx} {\ Biggr)} = \ lim \ limits _ {A \ to +0} {\ Biggl (} {{\ int \ limits _ {A} ^ {\ infty} {\ frac {f (\ alpha x)} {x}} \, dx} - {\ int \ limits _ {A} ^ {\ infty} {\ frac {f (\ beta x)} {x}} \, dx }} {\ Biggr)} =} {\displaystyle \lim \limits _{A\to +0}{\Biggl (}{\int \limits _{A}^{\infty }{\frac {f(\alpha x)-f(\beta x)}{x}}\,dx}{\Biggr )}=\lim \limits _{A\to +0}{\Biggl (}{{\int \limits _{A}^{\infty }{\frac {f(\alpha x)}{x}}\,dx}-{\int \limits _{A}^{\infty }{\frac {f(\beta x)}{x}}\,dx}}{\Biggr )}=}
={∀A>0∃∫A∞f(x)xdx⇒∫A∞f(x)xdx=F(∞)-F(A)⇒∫A∞f(αx)xdx=∫αA∞f(x)xdx=F(∞)-F(αA)}{\ displaystyle = \ left \ {\ forall A> 0 \ \ exists \ int \ limits _ {A} ^ {\ infty} {\ frac {f (x)} {x}} \, dx \ \ Rightarrow {\ int \ limits _ {A} ^ {\ infty} {\ frac {f (x)} {x}} \, dx = F (\ infty) -F (A)} \ Rightarrow {\ int \ limits _ {A } ^ {\ infty} {\ frac {f (\ alpha x)} {x}} \, dx = \ int \ limits _ {\ alpha A} ^ {\ infty} {\ frac {f (x)} { x}} \, dx} = F (\ infty) -F (\ alpha A) \ right \}} {\displaystyle =\left\{\forall A>0\ \exists \int \limits _{A}^{\infty }{\frac {f(x)}{x}}\,dx\ \Rightarrow {\int \limits _{A}^{\infty }{\frac {f(x)}{x}}\,dx=F(\infty )-F(A)}\Rightarrow {\int \limits _{A}^{\infty }{\frac {f(\alpha x)}{x}}\,dx=\int \limits _{\alpha A}^{\infty }{\frac {f(x)}{x}}\,dx}=F(\infty )-F(\alpha A)\right\}} [one]= {\ displaystyle =} {\displaystyle =}
=limA→+0(F(∞)-F(αA)-F(∞)+F(βA))=limA→+0(F(βA)-F(αA))=limA→+0(∫αβf(Ax)xdx)={\ displaystyle = \ lim \ limits _ {A \ to +0} {\ Biggl (} F (\ infty) -F (\ alpha A) -F (\ infty) + F (\ beta A) {\ Biggr) } = \ lim \ limits _ {A \ to +0} {\ Biggl (} F (\ beta A) -F (\ alpha A) {\ Biggr)} = \ lim \ limits _ {A \ to +0} {\ Biggl (} \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {f (Ax)} {x}} \, dx {\ Biggr)} =} {\displaystyle =\lim \limits _{A\to +0}{\Biggl (}F(\infty )-F(\alpha A)-F(\infty )+F(\beta A){\Biggr )}=\lim \limits _{A\to +0}{\Biggl (}F(\beta A)-F(\alpha A){\Biggr )}=\lim \limits _{A\to +0}{\Biggl (}\int \limits _{\alpha }^{\beta }{\frac {f(Ax)}{x}}\,dx{\Biggr )}=}
=limA→+0(f(Aξ)∫αβonexdx){\ displaystyle = \ lim \ limits _ {A \ to +0} {\ Biggl (} f (A \ xi) \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {1} {x} } \, dx {\ Biggr)}} {\displaystyle =\lim \limits _{A\to +0}{\Biggl (}f(A\xi )\int \limits _{\alpha }^{\beta }{\frac {1}{x}}\,dx{\Biggr )}} [2]=limA→+0(f(Aξ)(ln⁡(β)-ln⁡(α))) {\ displaystyle = \ lim \ limits _ {A \ to +0} {\ Biggl (} f (A \ xi) {\ biggl (} \ ln (\ beta) - \ ln (\ alpha) {\ biggr)} {\ Biggr)}} {\displaystyle =\lim \limits _{A\to +0}{\Biggl (}f(A\xi ){\biggl (}\ln(\beta )-\ln(\alpha ){\biggr )}{\Biggr )}} [3]=limA→+0(f(Aξ))ln⁡(βα)= {\ displaystyle = \ lim \ limits _ {A \ to +0} {\ biggl (} f (A \ xi) {\ biggr)} \ ln {\ biggl (} {\ frac {\ beta} {\ alpha} } {\ biggr)} =} {\displaystyle =\lim \limits _{A\to +0}{\biggl (}f(A\xi ){\biggr )}\ln {\biggl (}{\frac {\beta }{\alpha }}{\biggr )}=}
={ξ∈[α,β]⇒limA→+0Aξ=0,f(x)∈C[0,+∞)⇒limA→+0f(Aξ)=f(0)}=f(0)ln⁡(βα).{\ displaystyle = \ left \ {\ xi \ in [\ alpha, \ beta] \ Rightarrow \ lim \ limits _ {A \ to +0} {A \ xi} = 0, f (x) \ in C [0 , + \ infty) \ Rightarrow \ lim \ limits _ {A \ to +0} {f (A \ xi) = f (0)} \ right \} = f (0) \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)}.}  

Frullani's Second Formula

Iff(x)∈C[0,+∞) {\ displaystyle f (x) \ in C [0, + \ infty)}   and∃limx→+∞f(x)<+∞ {\ displaystyle \ exists \ lim \ limits _ {x \ to + \ infty} f (x) <+ \ infty \}   then the following formula is valid:

∫0∞f(αx)-f(βx)xdx=(f(0)-f(+∞))ln⁡(βα)(α>0,β>0){\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = (f (0) -f ( + \ infty)) \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)} \ \ (\ alpha> 0, \ beta> 0)}  
Evidence:
∫0∞f(αx)-f(βx)xdx=limϵ→0,Δ→∞(∫ϵAf(αx)-f(βx)xdx+∫AΔf(αx)-f(βx)xdx){\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = \ lim \ limits _ {\ epsilon \ to 0, \ Delta \ to \ infty} {\ Biggl (} \ int \ limits _ {\ epsilon} ^ {A} {\ frac {f (\ alpha x) -f (\ beta x)} {x} } \, dx + \ int \ limits _ {A} ^ {\ Delta} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx {\ Biggr)}}   [four]= {\ displaystyle =}  
={ρ(ϵ,A)<∞,f(x)x∈C[ϵ,A]⇒∫ϵAf(x)xdx=F(A)-F(ϵ)⇒∫ϵAf(αx)xdx=F(αA)-F(αϵ)}{\ displaystyle = \ left \ {\ rho {\ bigl (} \ epsilon, A {\ bigr)} <\ infty, {\ frac {f (x)} {x}} \ in C [\ epsilon, A] \ Rightarrow \ int \ limits _ {\ epsilon} ^ {A} {\ frac {f (x)} {x}} \, dx = F (A) -F (\ epsilon) \ Rightarrow \ int \ limits _ { \ epsilon} ^ {A} {\ frac {f (\ alpha x)} {x}} \, dx = F (\ alpha A) -F (\ alpha \ epsilon) \ right \}}   [one]= {\ displaystyle =}  
=limϵ→0,Δ→+∞(F(αA)-F(αϵ)-F(βA)+F(βϵ)+∫AΔf(αx)-f(βx)xdx)={\ displaystyle = \ lim \ limits _ {\ epsilon \ to 0, \ Delta \ to + \ infty} {\ Biggl (} F (\ alpha A) -F (\ alpha \ epsilon) -F (\ beta A) + F (\ beta \ epsilon) + \ int \ limits _ {A} ^ {\ Delta} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx {\ Biggr )} =}  
={ρ(A,Δ)<∞,f(x)x∈C[A,Δ]⇒∫AΔf(x)xdx=F(Δ)-F(A)⇒∫AΔf(αx)xdx=F(αΔ)-F(αA)}={\ displaystyle = \ left \ {\ rho {\ bigl (} A, \ Delta {\ bigr)} <\ infty, {\ frac {f (x)} {x}} \ in C [A, \ Delta] \ Rightarrow \ int \ limits _ {A} ^ {\ Delta} {\ frac {f (x)} {x}} \, dx = F (\ Delta) -F (A) \ Rightarrow \ int \ limits _ { A} ^ {\ Delta} {\ frac {f (\ alpha x)} {x}} \, dx = F (\ alpha \ Delta) -F (\ alpha A) \ right \} =}  
=limϵ→+0,Δ→+∞(F(αA)-F(αϵ)-F(βA)+F(βϵ)+F(αΔ)-F(αA)-F(βΔ)+F(βA))={\ displaystyle = \ lim \ limits _ {\ epsilon \ to +0, \ Delta \ to + \ infty} {\ Biggl (} F (\ alpha A) -F (\ alpha \ epsilon) -F (\ beta A ) + F (\ beta \ epsilon) + F (\ alpha \ Delta) -F (\ alpha A) -F (\ beta \ Delta) + F (\ beta A) {\ Biggr)} =}  
=lim ϵ → + 0 ( F ( β ϵ ) - F ( α ϵ ) ) - lim Δ → + ∞ ( F ( β Δ ) - F ( α Δ ) ) = lim ϵ → + 0 ( ∫ α β f ( ϵ x ) x d x ) - lim Δ → + ∞ ( ∫ α β f ( Δ x ) x d x ) ={\ displaystyle = \ lim \ limits _ {\ epsilon \ to +0} {\ biggl (} F (\ beta \ epsilon) -F (\ alpha \ epsilon) {\ biggr)} - \ lim \ limits _ {\ Delta \ to + \ infty} {\ biggl (} F (\ beta \ Delta) -F (\ alpha \ Delta) {\ biggr)} = \ lim \ limits _ {\ epsilon \ to +0} {\ Biggl ( } \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {f (\ epsilon x)} {x}} \, dx {\ Biggr)} - \ lim \ limits _ {\ Delta \ to + \ infty} {\ Biggl (} \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {f (\ Delta x)} {x}} \, dx {\ Biggr)} =}  
=limϵ→+0(f(ϵη)∫αβonexdx)-limΔ→+∞(f(Δμ)∫αβonexdx){\ displaystyle = \ lim \ limits _ {\ epsilon \ to +0} {\ Biggl (} f (\ epsilon \ eta) \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {1} { x}} \, dx {\ Biggr)} - \ lim \ limits _ {\ Delta \ to + \ infty} {\ Biggl (} f (\ Delta \ mu) \ int \ limits _ {\ alpha} ^ {\ beta} {\ frac {1} {x}} \, dx {\ Biggr)}}   [2]=(limϵ→+0f(ϵη)-limΔ→+∞f(Δμ))(ln⁡(β)-ln⁡(α)) {\ displaystyle = {\ biggl (} \ lim \ limits _ {\ epsilon \ to +0} f (\ epsilon \ eta) - \ lim \ limits _ {\ Delta \ to + \ infty} f (\ Delta \ mu ) {\ biggr)} {\ biggl (} \ ln (\ beta) - \ ln (\ alpha) {\ biggr)}}   [3]= {\ displaystyle =}  
={η,μ∈[α,β]⇒limϵ→+0ϵη=0,limΔ→+∞Δμ=+∞,f(x)∈C[0,+∞]⇒limϵ→+0f(ϵη)=f(0),limΔ→+∞f(Δμ)=f(+∞)}={\ displaystyle = \ left \ {\ eta, \ mu \ in [\ alpha, \ beta] \ Rightarrow \ lim \ limits _ {\ epsilon \ to +0} \ epsilon \ eta = 0, \ lim \ limits _ { \ Delta \ to + \ infty} \ Delta \ mu = + \ infty, f (x) \ in C [0, + \ infty] \ Rightarrow \ lim \ limits _ {\ epsilon \ to +0} f (\ epsilon \ eta) = f (0), \ lim \ limits _ {\ Delta \ to + \ infty} f (\ Delta \ mu) = f (+ \ infty) \ right \} =}  
=(f(0)-f(+∞))ln⁡(βα).{\ displaystyle = {\ biggl (} f (0) -f (+ \ infty) {\ biggr)} \ ln {\ biggl (} {\ frac {\ beta} {\ alpha}} {\ biggr)}. }  

Frullani's Third Formula

Iff(x)∈C(0,+∞) {\ displaystyle f (x) \ in C (0, + \ infty) \}   and∀A>0∃∫0Af(x)xdx {\ displaystyle \ \ forall A> 0 \ \ exists \ int \ limits _ {0} ^ {A} {\ frac {f (x)} {x}} \, dx}   and∃limx→+∞f(x)<+∞ {\ displaystyle \ exists \ lim \ limits _ {x \ to + \ infty} f (x) <+ \ infty \}   then the following formula is valid:

∫0∞f(αx)-f(βx)xdx=f(+∞)ln⁡(αβ)(α>0,β>0){\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {f (\ alpha x) -f (\ beta x)} {x}} \, dx = f (+ \ infty) \ ln {\ biggl (} {\ frac {\ alpha} {\ beta}} {\ biggr)} \ \ (\ alpha> 0, \ beta> 0) \}  

Examples

  • ∫0∞sin⁡(αx)αx-sin⁡(βx)βxxdx=ln⁡(βα){\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {{\ frac {\ sin (\ alpha x)} {\ alpha x}} - {\ frac {\ sin (\ beta x) } {\ beta x}}} {x}} \, dx \, = \, \ ln \ left ({\ frac {\ beta} {\ alpha}} \ right)}  
  • ∫0∞sin⁡(αx+m)-sin⁡(βx+m)xdx=sin⁡(m)⋅ln⁡(βα){\ displaystyle \ int \ limits _ {0} ^ {\ infty} \! {\ frac {\ sin \ left (\ alpha x + m \ right) - \ sin \ left (\ beta x + m \ right)} {x}} {dx} = \ sin (m) \ cdot \ ln \ left ({\ frac {\ beta} {\ alpha}} \ right)}  
  • ∫0∞cos⁡(αx+m)-cos⁡( β x + m ) x d x = cos ⁡ ( m ) ⋅ ln ⁡ ( β α ){\ displaystyle \ int \ limits _ {0} ^ {\ infty} \! {\ frac {\ cos \ left (\ alpha x + m \ right) - \ cos \ left (\ beta x + m \ right)} {x}} {dx} = \ cos (m) \ cdot \ ln \ left ({\ frac {\ beta} {\ alpha}} \ right)}  
  • ∫0∞mn+αx-mn+βxxdx=mnln⁡(βα){\ displaystyle \ int \ limits _ {0} ^ {\ infty} {\ frac {{\ frac {m} {n + \ alpha x}} - {\ frac {m} {n + \ beta x}}} {x }} \, dx \, = \, {{\ frac {m} {n}} \, \ ln \ left ({\ frac {\ beta} {\ alpha}} \ right)}}  
  • ∫0∞arctg(-αx)αx-arctg(-βx)βxxdx=ln⁡(αβ){\ displaystyle \ int \ limits _ {0} ^ {\ infty} \! \, {\ frac {{\ frac {arctg \ left (- \ alpha \, x \ right)} {\ alpha \, x}} - {\ frac {arctg \ left (- \ beta \, x \ right)} {\ beta \, x}}} {x}} {dx} \, = {\, \ ln \ left ({\ frac { \ alpha} {\ beta}} \ right)}}  

Notes

  1. ↑ 1 2 Antiderivatives
  2. ↑ 1 2 Average theorem in a definite integral
  3. ↑ 1 2 Table of integrals
  4. ↑ Riemann integral , linearity property

See also

  • Integration Methods

Links

  • Weisstein, Eric W. Frullani's Integral on the Wolfram MathWorld website.
  • Prudnikov A.P. , Brychkov Yu.A. , Marichev O.I. Integrals and series. - M .: Nauka, 1981 .-- 800 p.
Source - https://ru.wikipedia.org/w/index.php?title=Frullani formulas&oldid = 96283543


More articles:

  • Theatron (Theater)
  • Andre Buacler
  • Haunted House (film, 1987, Italy)
  • Voulez-Vous
  • The Megahertz Myth
  • Yureneva, Nadezhda Yurevna
  • Shub-baba Lyuba!
  • Parody of Hazelberg
  • Kozak, Peter
  • Noisy Day

All articles

Clever Geek | 2019