Clever Geek Handbook
📜 ⬆️ ⬇️

Free work

Count Cayley free artworkZ2∗Z3 {\ displaystyle \ mathbb {Z} _ {2} * \ mathbb {Z} _ {3}} {\ displaystyle \ mathbb {Z} _ {2} * \ mathbb {Z} _ {3}} .

A free product of groups is a group generated by elements of these two groups, without any additional relations .

Free workGone {\ displaystyle G_ {1}} G_ {1} andG2 {\ displaystyle G_ {2}} G_ {2} usually indicatedGone∗G2 {\ displaystyle G_ {1} * G_ {2}} {\ displaystyle G_ {1} * G_ {2}} .

Definitions

  • If groups are given through generators and relationsGone=⟨Sone|Rone⟩ {\ displaystyle G_ {1} = \ langle S_ {1} | R_ {1} \ rangle}   ,G2=⟨S2|R2⟩ {\ displaystyle G_ {2} = \ langle S_ {2} | R_ {2} \ rangle}   then
    Gone∗G2=⟨Sone∪S2|Rone∪R2⟩{\ displaystyle G_ {1} * G_ {2} = \ langle S_ {1} \ cup S_ {2} | R_ {1} \ cup R_ {2} \ rangle}  
    • This definition also allows a natural generalization to the case of a free product of any number of groups.
  • Free workGone∗G2 {\ displaystyle G_ {1} * G_ {2}}   can also be defined as layered coproductGone⨿{e}G2 {\ displaystyle G_ {1} \ amalg _ {\ {e \}} G_ {2}}   for the trivial group{e} {\ displaystyle \ {e \}}   in the category of groups.

Examples

  • Free workZ2∗Z2 {\ displaystyle \ mathbb {Z} _ {2} * \ mathbb {Z} _ {2}}   isomorphic to the infinite dihedral groupD∞ {\ displaystyle D _ {\ infty}}   .
  • Free workZ2∗Z3 {\ displaystyle \ mathbb {Z} _ {2} * \ mathbb {Z} _ {3}}   isomorphic to the projective groupPSL(2,Z) {\ displaystyle PSL (2, \ mathbb {Z})}   .
  • Free workn {\ displaystyle n}   copiesZ {\ displaystyle \ mathbb {Z}}   - free group withn {\ displaystyle n}   formative.
  • The Seifert-van Kampen theorem in particular states that ifX {\ displaystyle X}   - topological space, andV,U⊂X {\ displaystyle V, U \ subset X}   - two connected open sets such that the intersectionW=V∩U {\ displaystyle W = V \ cap U}   simply connected andX=V∪U {\ displaystyle X = V \ cup U}   then the fundamental groupX {\ displaystyle X}   there is a free product of fundamental groupsV {\ displaystyle V}   andU {\ displaystyle U}   ; i.e
    πoneX=πoneV∗πoneU.{\ displaystyle \ pi _ {1} X = \ pi _ {1} V * \ pi _ {1} U.}  

Literature

  • Kargapolov M.I., Merzlyakov Yu. I. Fundamentals of group theory. M .: Nauka, 1982.
  • Kostrikin A. I. Introduction to Algebra. M .: Nauka, 1977.
  • Kurosh A.G. Group Theory. (3rd ed.). M .: Nauka, 1967.
  • Hall M. Group Theory. M .: Publishing house of foreign literature, 1962.
Source - https://ru.wikipedia.org/w/index.php?title=Free_product&oldid=101549560


More articles:

  • Aurora (TV presenter)
  • Election of the heads of the constituent entities of the Russian Federation in 2003
  • Mazepa, Igor Alexandrovich
  • Grate
  • Bordon, Marcelo
  • Futsal Africa Championship
  • Samson (Meat Factory)
  • Johns Hopkins University
  • Angela (Marvel Comics)
  • Battle of Brandy Station

All articles

Clever Geek | 2019