Clever Geek Handbook
📜 ⬆️ ⬇️

Combination

In combinatorics a combination ofn {\ displaystyle n} n byk {\ displaystyle k} k called setk {\ displaystyle k} k elements selected from a given set containingn {\ displaystyle n} n various elements.

Sets that differ only in the sequence of elements (but not in composition) are considered the same, this combination differs from placements .

So, for example, sets (3-element combinations, subsets,k=3 {\ displaystyle k = 3} k = 3 ) {2, 1, 3} and {3, 2, 1} of the 6-element set {1, 2, 3, 4, 5, 6} (n=6 {\ displaystyle n = 6} n = 6 ) are the same (while the placement would be different) and consist of the same elements {1,2,3}.

In general, a number showing how many ways you can choosek {\ displaystyle k} k elements from a set containingn {\ displaystyle n} n various elements standing at the intersectionk {\ displaystyle k} k diagonals andn {\ displaystyle n} n th row of Pascal's triangle . [one]

Content

Number of Combinations

The number of combinations ofn {\ displaystyle n}   byk {\ displaystyle k}   equal to binomial coefficient

(nk)=Cnk=n!k!(n-k)!.{\ displaystyle {n \ choose k} = C_ {n} ^ {k} = {\ frac {n!} {k! \ left (nk \ right)!}}.}  

At fixedn {\ displaystyle n}   a generating function of a sequence of numbers of combinations(n0) {\ displaystyle {\ tbinom {n} {0}}}   ,(none) {\ displaystyle {\ tbinom {n} {1}}}   ,(n2) {\ displaystyle {\ tbinom {n} {2}}}   , … is an:

∑k=0n(nk)xk=(one+x)n.{\ displaystyle \ sum _ {k = 0} ^ {n} {\ binom {n} {k}} x ^ {k} = (1 + x) ^ {n}.}  

The two-dimensional generating function of combination numbers is

∑n=0∞∑k=0n(nk)xkyn=∑n=0∞(one+x)nyn=oneone-y-xy.{\ displaystyle \ sum _ {n = 0} ^ {\ infty} \ sum _ {k = 0} ^ {n} {\ binom {n} {k}} x ^ {k} y ^ {n} = \ sum _ {n = 0} ^ {\ infty} (1 + x) ^ {n} y ^ {n} = {\ frac {1} {1-y-xy}}.}  

Repeat Combinations

A combination with repetitions refers to sets in which each element can participate several times. In particular, the number of monotone non-decreasing functions from the set{one,2,...,k} {\ displaystyle \ {1,2, \ dots, k \}}   in many{one,2,...,n} {\ displaystyle \ {1,2, \ dots, n \}}   equal to the number of combinations with repetitions fromn {\ displaystyle n}   byk {\ displaystyle k}   .

The number of combinations with repetitions fromn {\ displaystyle n}   byk {\ displaystyle k}   equal to binomial coefficient

C(n)k=((nk))=(n+k-onen-one)=(n+k-onek)=(-one)k(-nk)=(n+k-one)!k!⋅(n-one)!.{\ displaystyle C _ {(n)} ^ {k} = \ left (\! \! {\ binom {n} {k}} \! \! \ right) = {\ binom {n + k-1} { n-1}} = {\ binom {n + k-1} {k}} = (- 1) ^ {k} {\ binom {-n} {k}} = {\ frac {(n + k- 1)!} {K! \ Cdot (n-1)!}}.}  
Evidence

Let theren {\ displaystyle n}   types of objects, and objects of the same type are indistinguishable. Let there be unlimited (or sufficiently large, in any case, not lessk {\ displaystyle k}   ) the number of objects of each type. From this assortment we choosek {\ displaystyle k}   objects; objects of the same type may occur in the sample; the order of selection does not matter. Denote byxj {\ displaystyle x_ {j}}   number of selected objectsj {\ displaystyle j}   typexj≥0 {\ displaystyle x_ {j} \ geq 0}   ,j=one,2,...,n {\ displaystyle j = 1,2, \ dots, n}   . Thenxone+x2+⋯+xn=k {\ displaystyle x_ {1} + x_ {2} + \ dots + x_ {n} = k}   . But the number of solutions to this equation is easily calculated using "balls and partitions": each solution corresponds to the arrangement in a rowk {\ displaystyle k}   balls andn-one {\ displaystyle n-1}   partitions so that between(j-one) {\ displaystyle (j-1)}   andj {\ displaystyle j}   the partitions were exactlyxj {\ displaystyle x_ {j}}   balls. But such constellations are exactly(n+k-onek) {\ displaystyle {\ tbinom {n + k-1} {k}}}   , as required. ■

At fixedn {\ displaystyle n}   generating function of numbers of combinations with repetitions fromn {\ displaystyle n}   byk {\ displaystyle k}   is an:

∑k=0∞(-one)k(-nk)xk=(one-x)-n.{\ displaystyle \ sum _ {k = 0} ^ {\ infty} (- 1) ^ {k} {- n \ choose k} x ^ {k} = (1-x) ^ {- n}.}  

The two-dimensional generating function of the numbers of combinations with repetitions is:

∑n=0∞∑k=0∞(-one)k(-nk)xkyn=∑n=0∞(one-x)-nyn=one-xone-x-y.{\ displaystyle \ sum _ {n = 0} ^ {\ infty} \ sum _ {k = 0} ^ {\ infty} (- 1) ^ {k} {- n \ choose k} x ^ {k} y ^ {n} = \ sum _ {n = 0} ^ {\ infty} (1-x) ^ {- n} y ^ {n} = {\ frac {1-x} {1-xy}}.}  

See also

  • Combinatorics
  • Rearrangement
  • Accommodation
  • Polynomial

Notes

  1. ↑ The amazing triangle of the great Frenchman.

Links

  • R. Stanley. Enumeration combinatorics. - M .: World, 1990.
Source - https://ru.wikipedia.org/w/index.php?title= Combination&oldid = 100576160


More articles:

  • Service Marketing
  • Buto (dance)
  • About Fedot-Archer, daring good fellow
  • European Court of Audit
  • Metacentric Height
  • Amat
  • Silent Hill 2 (film)
  • Concatenative Programming Language
  • Westmeath
  • SGR J1550-5418

All articles

Clever Geek | 2019