Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Conversion scheme

The [set] transformation scheme (Axiom schema of replacement) is the following statement of set theory :

  • βˆ€xβˆƒ{one}y(Ο•[x,y])β†’βˆ€aβˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈aβˆ§Ο•[b,c])){\ displaystyle \ forall x \ exists ^ {\ {1 \}} y \ (\ phi [x, y]) \ to \ forall a \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in a \ \ land \ \ phi [b, c]) \)} {\ displaystyle \ forall x \ exists ^ {\ {1 \}} y \ (\ phi [x, y]) \ to \ forall a \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in a \ \ land \ \ phi [b, c]) \)} whereβˆ€xβˆƒ{one}y(Ο•[x,y])β‡”βˆ€xβˆƒ!y(Ο•[x,y])β‡”βˆ€xβˆƒyβˆ€yβ€²(Ο•[x,y]↔y=yβ€²) {\ displaystyle \ forall x \ exists ^ {\ {1 \}} y \ (\ phi [x, y]) \ Leftrightarrow \ forall x \ exists! y \ (\ phi [x, y]) \ Leftrightarrow \ forall x \ exists y \ forall y '(\ phi [x, y] \ leftrightarrow y = y')} {\ displaystyle \ forall x \ exists ^ {\ {1 \}} y \ (\ phi [x, y]) \ Leftrightarrow \ forall x \ exists! y \ (\ phi [x, y]) \ Leftrightarrow \ forall x \ exists y \ forall y '(\ phi [x, y] \ leftrightarrow y = y')}

The transformation scheme can be formulated in Russian, namely: "Any set can be transformed into [the same or another] setd {\ displaystyle d} d making a functional judgmentΟ• {\ displaystyle \ phi} \ phi about all elementsb {\ displaystyle b} b given seta {\ displaystyle a} a . "

Example
In the following example, functional judgmenty=x {\ displaystyle y = x} y = x converts every seta {\ displaystyle a} a in yourself.
Ο•[x,y]↔y=xβ‡’βˆ€aβˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈a∧c=b))β‡”βˆ€aβˆƒdβˆ€c(c∈d↔c∈a){\ displaystyle \ phi [x, y] \ leftrightarrow y = x \ quad \ Rightarrow \ quad \ forall a \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in a \ \ land \ c = b)) \ ​​quad \ Leftrightarrow \ quad \ forall a \ exists d \ forall c \ (c \ in d \ leftrightarrow c \ in a)} \ phi [x, y] \ leftrightarrow y = x \ quad \ Rightarrow \ quad \ forall a \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in a \ \ land \ c = b)) \ ​​quad \ Leftrightarrow \ quad \ forall a \ exists d \ forall c \ (c \ in d \ leftrightarrow c \ in a)

Other wording of the transformation scheme

The conversion scheme is also written as follows:

  • βˆ€a(βˆ€b(b∈aβ†’βˆƒ{one}y(Ο•[b,y]))β†’βˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈aβˆ§Ο•[b,c]))){\ displaystyle \ forall a \ (\ \ forall b \ (b \ in a \ to \ exists ^ {\ {1 \}} y \ (\ phi [b, y]) \) \ quad \ to \ quad \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in a \ \ land \ \ phi [b, c]) \))} {\displaystyle \forall a\ (\ \forall b\ (b\in a\to \exists ^{\{1\}}y\ (\phi [b,y])\ )\quad \to \quad \exists d\forall c\ (c\in d\leftrightarrow \exists b\ (b\in a\ \land \ \phi [b,c])\ ))}
Examples
1. In the following example, functional judgmenty=2bβ€² {\ displaystyle y = 2b '} {\displaystyle y=2b'} converts many natural numbersN {\ displaystyle \ mathbb {N}} \mathbb {N} into many even numbers{0,2,four,...} {\ displaystyle \ {0,2,4, ... \}} {\displaystyle \{0,2,4,...\}} .
a=N∧(Ο•[bβ€²,y]↔y=2bβ€²)β‡’βˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈N∧c=2b))β‡”βˆƒdβˆ€c(c∈d↔c∈{0,2,four,...}){\ displaystyle {\ begin {aligned} a = \ mathbb {N} \ \ land \ (\ phi [b ', y] \ leftrightarrow y = 2b') \ quad \ Rightarrow \ quad \ exists d \ forall c \ ( c \ in d \ leftrightarrow \ exists b \ (b \ in \ mathbb {N} \ \ land \ c = 2b)) \\\ \ Leftrightarrow \ exists d \ forall c \ (c \ in d \ leftrightarrow c \ in \ {0,2,4, ... \}) \ end {aligned}}} {\begin{aligned}a={\mathbb  {N}}\ \land \ (\phi [b',y]\leftrightarrow y=2b')\quad \Rightarrow \quad \exists d\forall c\ (c\in d\leftrightarrow \exists b\ (b\in {\mathbb  {N}}\ \land \ c=2b))\\\ \Leftrightarrow \exists d\forall c\ (c\in d\leftrightarrow c\in \{0,2,4,...\})\end{aligned}}
2. In the following example, functional judgment(bβ€²=0β†’y=aone)∧(bβ€²β‰ 0β†’y=a2) {\ displaystyle (b '= 0 \ to y = a_ {1}) \ \ land \ (b' \ neq 0 \ to y = a_ {2})} {\displaystyle (b'=0\to y=a_{1})\ \land \ (b'\neq 0\to y=a_{2})} converts a set of real numbersR {\ displaystyle \ mathbb {R}} \mathbb {R} into a [unordered] pair{aone,a2} {\ displaystyle \ {a_ {1}, \ a_ {2} \}} {\displaystyle \{a_{1},\ a_{2}\}} .
a=R∧(Ο•[bβ€²,y]↔(bβ€²=0β†’y=aone)∧(bβ€²β‰ 0β†’y=a2))β‡’βˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈R∧(b=0β†’c=aone)∧(bβ‰ 0β†’c=a2)))β‡”βˆƒdβˆ€c(c∈d↔c=aone∨c=a2){\ displaystyle {\ begin {aligned} a = \ mathbb {R} \ quad \ land \ quad (\ phi [b ', y] \ leftrightarrow (b' = 0 \ to y = a_ {1}) \ \ land \ (b '\ neq 0 \ to y = a_ {2})) \ quad \ Rightarrow \\\ \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in \ mathbb {R } \ \ land \ (b = 0 \ to c = a_ {1}) \ land (b \ neq 0 \ to c = a_ {2}) \)) \\\ \ Leftrightarrow \ exists d \ forall c \ ( c \ in d \ leftrightarrow c = a_ {1} \ \ lor \ c = a_ {2}) \ end {aligned}}} {\begin{aligned}a={\mathbb  {R}}\quad \land \quad (\phi [b',y]\leftrightarrow (b'=0\to y=a_{1})\ \land \ (b'\neq 0\to y=a_{2}))\quad \Rightarrow \\\ \exists d\forall c\ (c\in d\leftrightarrow \exists b\ (b\in {\mathbb  {R}}\ \land \ (b=0\to c=a_{1})\land (b\neq 0\to c=a_{2})\ ))\\\ \Leftrightarrow \exists d\forall c\ (c\in d\leftrightarrow c=a_{1}\ \lor \ c=a_{2})\end{aligned}}
3. In the following example, functional judgment(0≀b′≀oneβ†’y=bβ€²)∧(Β¬(0≀b′≀one)β†’y=one) {\ displaystyle (0 \ leq b '\ leq 1 \ to y = b') \ \ land \ (\ neg (0 \ leq b '\ leq 1) \ to y = 1)} {\displaystyle (0\leq b'\leq 1\to y=b')\ \land \ (\neg (0\leq b'\leq 1)\to y=1)} converts a set of integersZ {\ displaystyle \ mathbb {Z}} \mathbb {Z} into a subset of natural numbers{n:n∈N∧n<2} {\ displaystyle \ {n: \ n \ in \ mathbb {N} \ \ land \ n <2 \}} {\displaystyle \{n:\ n\in \mathbb {N} \ \land \ n<2\}} .
a=Z∧(Ο•[bβ€²,y]↔(0≀b′≀oneβ†’y=bβ€²)∧(Β¬(0≀b′≀one)β†’y=one))β‡’βˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈Z∧(0≀b≀oneβ†’c=b)∧(b<0∨b>oneβ†’c=one)))β‡”βˆƒdβˆ€c(c∈d↔c∈{n:n∈N∧n<2}){\ displaystyle {\ begin {aligned} a = \ mathbb {Z} \ quad \ land \ quad (\ phi [b ', y] \ leftrightarrow (0 \ leq b' \ leq 1 \ to y = b ') \ land (\ neg (0 \ leq b '\ leq 1) \ to y = 1)) \ quad \ Rightarrow \\\ \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in \ mathbb {Z} \ land (0 \ leq b \ leq 1 \ to c = b) \ land (b <0 \ lor b> 1 \ to c = 1))) \\\ \ Leftrightarrow \ exists d \ forall c \ (c \ in d \ leftrightarrow c \ in \ {n: \ n \ in \ mathbb {N} \ \ land \ n <2 \} \) \ end {aligned}}} {\begin{aligned}a={\mathbb  {Z}}\quad \land \quad (\phi [b',y]\leftrightarrow (0\leq b'\leq 1\to y=b')\land (\neg (0\leq b'\leq 1)\to y=1))\quad \Rightarrow \\\ \exists d\forall c\ (c\in d\leftrightarrow \exists b\ (b\in {\mathbb  {Z}}\land (0\leq b\leq 1\to c=b)\land (b<0\lor b>1\to c=1)))\\\ \Leftrightarrow \exists d\forall c\ (c\in d\leftrightarrow c\in \{n:\ n\in {\mathbb  {N}}\ \land \ n<2\}\ )\end{aligned}}

The conversion scheme is also written as follows:

  • βˆ€a(βˆ€b(b∈aβ†’βˆƒ{0,one}y(Ο•[b,y]))β†’βˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈aβˆ§Ο•[b,c]))){\ displaystyle \ forall a \ (\ \ forall b \ (b \ in a \ to \ exists ^ {\ {0,1 \}} y \ (\ phi [b, y])) \ quad \ to \ quad \ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in a \ \ land \ \ phi [b, c]) \))}   whereβˆƒ{0,one}y(Ο•[b,y])β‡”βˆ€yβˆ€yβ€²(Ο•[b,y]βˆ§Ο•[b,yβ€²]β†’y=yβ€²) {\ displaystyle \ exists ^ {\ {0,1 \}} y \ (\ phi [b, y]) \ Leftrightarrow \ forall y \ forall y '\ (\ phi [b, y] \ \ land \ \ phi [b, y '] \ to y = y')}  

Notes

1. The relationship between the transformation scheme and the axiom of a pair is expressed by the following statement:

  • βˆ€aoneβˆ€a2(a=P(P(βˆ…))∧(Ο•[bβ€²,y]↔(bβ€²=βˆ…β†’y=aone)∧(bβ€²β‰ βˆ…β†’y=a2))β†’(βˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈aβˆ§Ο•[b,c]))β†’βˆƒcβˆ€b(b∈c↔b=aone∨b=a2))),{\ displaystyle {\ begin {aligned} \ forall a_ {1} \ forall a_ {2} \ (a = {\ mathcal {P}} ({\ mathcal {P}} (\ varnothing)) \ quad \ land \ quad (\ phi [b ', y] \ \ leftrightarrow \ (b' = \ varnothing \ to y = a_ {1}) \ land (b '\ neq \ varnothing \ to y = a_ {2}) \) \ \\ \ rightarrow \ quad (\ exists d \ forall c \ (c \ in d \ \ leftrightarrow \ \ exists b \ (b \ in a \ land \ phi [b, c])) \ \ rightarrow \ \ exists c \ forall b \ (b \ in c \ leftrightarrow b = a_ {1} \ lor b = a_ {2}) \)), \ end {aligned}}}  
WhereP(P(βˆ…)) {\ displaystyle {\ mathcal {P}} ({\ mathcal {P}} (\ varnothing))}   - Boolean Boolean empty set.

2. The relationship between the conversion scheme and the allocation scheme is expressed by the following statement:

  • βˆ€a(x∈{b:b∈a∧Φ[b]}∧(Ο•[bβ€²,y]↔(Ξ¦[bβ€²]β†’y=bβ€²)∧(¬Φ[bβ€²]β†’y=x))β†’(βˆƒdβˆ€c(c∈dβ†”βˆƒb(b∈aβˆ§Ο•[b,c]))β†”βˆƒcβˆ€b(b∈c↔b∈a∧Φ[b]))){\ displaystyle {\ begin {aligned} \ forall a \ (\ x \ in \ {b: b \ in a \ land \ Phi [b] \} \ quad \ land \ quad (\ phi [b ', y] \ \ leftrightarrow \ (\ Phi [b '] \ to y = b') \ land (\ neg \ Phi [b '] \ to y = x) \) \\\ \ to \ quad (\ exists d \ forall c \ (c \ in d \ leftrightarrow \ exists b \ (b \ in a \ land \ phi [b, c])) \ \ leftrightarrow \ \ exists c \ forall b \ (b \ in c \ leftrightarrow b \ in a \ land \ Phi [b])) \) \ end {aligned}}}  

Historical background

The transformation scheme was not included in the set of axioms of set theory formulated by the German mathematician Ernst Zermelo in 1908.

The transformation scheme was proposed by Adolf Frenkel in 1922 , a little later and independently of it, the scheme was proposed by the Norwegian mathematician Turalf Skulem .

See also

  • Axiomatics of set theory

Literature

Source - https://ru.wikipedia.org/w/index.php?title= Transformation_scheme&oldid = 79196753


More articles:

  • Akhmat Kadyrov Square
  • But
  • Nilsson Kaisa
  • Four Corners (USA)
  • Zimovnikovskoye rural settlement
  • Ignashov, Alexey Viktorovich
  • Glubokinskoe urban settlement
  • Hilbert's theorem on zeros
  • Tupper Earl Silas
  • Rowing at the 2008 Summer Olympics - Loners (Women)

All articles

Clever Geek | 2019