Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Phagocytes

Microphotograph of a neutrophil phagocytizing Bacillus anthracis cells (orange). Scanning Electron Microscopy

Phagocytes (from other Greek. ΦαγΡῖν β€œdevour” + κύτος β€œcell” [1] ) are cells of the immune system that protect the body by absorbing ( phagocytosis ) harmful foreign particles ( bacteria , viruses ), as well as dead or dying cells [ 2] . They are important for the fight against infection and post-infectious immunity [3] . Phagocytosis is important for the entire animal world [4] and is highly developed in vertebrates [5] . The role of phagocytes in protecting against bacteria was first discovered by I. I. Mechnikov in 1882, when he studied starfish larvae [6] . Mechnikov was awarded in 1908 the Nobel Prize in Physiology for the creation of the cellular theory of immunity [7] . Phagocytes are present in many organisms; some amoeba are similar to macrophages in many details of their behavior, which indicates that phagocytes appeared in the early stages of evolution [8] .

The phagocytes of humans and other animals are called β€œprofessional” or β€œunprofessional” depending on how efficiently they phagocytize [9] . Professional phagocytes include neutrophils , monocytes , macrophages , dendritic cells and mast cells [10] [11] . The main difference between professional and non-professional phagocytes is that professional ones have molecules on their surface called receptors that detect foreign objects - for example, bacteria [12] . One liter of adult blood normally contains about 2.5-7.5 billion neutrophils, 200-900 million monocytes [13] .

In an infection, chemical signals attract phagocytes to the place where the pathogen has entered the body. These signals may come from bacteria or from other phagocytes already present there. Phagocytes move by chemotaxis . Upon contact of the phagocyte with the bacterium, the receptors on its surface bind to it, which leads to the absorption of the bacterium by the phagocyte [14] . Some phagocytes kill infiltrated pathogens with the help of reactive oxygen species and nitric oxide [15] . After phagocytosis, macrophages and dendritic cells can also participate in antigen presentation , a process in which phagocytes move pathogenic material back to their surface. This material is then presented to other cells of the immune system. Some phagocytes enter the lymph nodes and present the material to lymphocytes . This process plays an important role in the formation of immunity [16] . However, many pathogens are resistant to phagocyte attacks [3] .

Content

  • 1 Discovery History
  • 2 Phagocytosis
  • 3 Mechanisms for the destruction of foreign agents
    • 3.1 Intracellular oxygen-dependent pathway
    • 3.2 Intracellular oxygen-independent pathway
    • 3.3 Extracellular pathways
    • 3.4 viruses
  • 4 Role in apoptosis
  • 5 Interaction with other cells
    • 5.1 Presentation of antigen
    • 5.2 Immunological tolerance
  • 6 Professional phagocytes
    • 6.1 Activation
    • 6.2 Migration
    • 6.3 Monocytes
    • 6.4 Macrophages
    • 6.5 Neutrophils
    • 6.6 Dendritic cells
    • 6.7 Mast cells
  • 7 Non-professional phagocytes
  • 8 Pathogen resistance
    • 8.1 Avoidance of contact
    • 8.2 Avoidance of absorption
    • 8.3 Survival inside the phagocyte
    • 8.4 Destruction
    • 8.5 Disruption of signal transmission in the cell
  • 9 Damage to a macroorganism by phagocytes
  • 10 evolutionary origin
  • 11 See also
  • 12 Notes
  • 13 Literature

Discovery History

Ilya Ilyich Mechnikov

Although the phenomenon, later called phagocytosis, was first observed by the American physician Joseph Richardson in 1869 and the Canadian physician William Osler in 1875, their work did not cause noticeable interest among contemporaries [17] [18] . It was the Russian biologist Ilya Ilyich Mechnikov who convincingly showed for the first time that specialized cells are involved in protection against microbial infection. In his first studies, he observed the absorption of alien material by such cells during experiments with ciliary worms (1878) and cricking (1880) [19] . In 1882, he studied motile cells in starfish larvae and suggested that they are important for the immune defense of animals. To test this idea, he stuck small needles from a tangerine tree into a larva and after a few hours found that motile cells surrounded the needles [20] . Mechnikov went to Vienna and shared his idea with Karl Klaus ; he proposed for the cells that Mechnikov observed the name β€œphagocytes” [21] .

A year later, Mechnikov studied a freshwater crustacean - daphnia , a small transparent animal that can be studied directly under a microscope. He discovered that fungal spores that fell on Daphnia were destroyed by phagocytes. Mechnikov continued his observations on the white blood cells of mammals and found that Bacillus anthracis could also be destroyed by phagocytes. The process of capture and digestion of bacteria and other objects by phagocytes, he called phagocytosis [22] . Mechnikov suggested that phagocytes are the primary defense against penetrating microorganisms. Mechnikov was awarded (along with Paul Erlich ) in 1908 the Nobel Prize in physiology or medicine for his work on phagocytes and phagocytosis [7] . In 1903, Almroth Wright discovered that phagocytosis is supported by specific antibodies , which he called opsonins [23] .

Although the significance of these discoveries gradually gained recognition at the beginning of the twentieth century, the complex nature of the relationship between phagocytes and other components of the immune system was not known until the 1980s [24] .

Phagocytosis

 
Three stages of phagocytosis:
1. Unbound receptors on the surface of the phagocyte do not trigger phagocytosis.
2. The binding of receptors causes their grouping.
3. Phagocytosis starts and the particle is absorbed by phagocyte

Phagocytosis is the process of absorption of foreign particles by cells [25] . It includes a sequence of molecular processes [26] . Phagocytosis occurs after receptor binding to a foreign agent (e.g., bacteria). Then the phagocyte surrounds the bacterium and absorbs it. Phagocytosis of a bacterium by a human neutrophil occurs in approximately 9 minutes [27] . Inside the phagocyte, the bacterium is part of the phagosome . Within a minute, the phagosome merges with a lysosome or granule containing enzymes to form a . A prisoner bacterium is subjected to aggressive action [28] and dies after a few minutes [27] . Dendritic cells and macrophages are not so fast, and phagocytosis in these cells can occur for many hours. Macrophages absorb large amounts of foreign material and often release some undigested particles back. This material is a signal for the migration of macrophages from the blood [29] . Phagocytes are able to absorb almost any substance.

 
Macrophages have special receptors that promote phagocytosis.

Phagocytes have many different receptors on their surface, due to which they bind foreign material [3] . These include opsonin receptors, receptors, and Toll-like receptors . Opsonin receptors enhance phagocytosis of bacteria that are coated with (IgG) or complement . Complement is a complex of protein molecules in the blood that destroy cells or mark them for destruction [30] . Scavenger receptors bind to a variety of molecules on the surface of a bacterial cell, and Toll-like receptors bind to more specific molecules. The binding of Toll-like receptors enhances phagocytosis and causes phagocytes to release a group of factors that cause inflammation [3] .

Alien Agent Destruction Mechanisms

 
A simplified scheme of phagocytosis and destruction of a bacterial cell

The destruction of microorganisms is an important function of phagocytosis [31] , which occurs either during phagocytosis (intracellular destruction) or outside the phagocyte (extracellular destruction).

Intracellular Oxygen Dependent Pathway

When a phagocyte absorbs a bacterium (or any other foreign material), oxygen consumption increases, which is called a . In this case, active forms of oxygen are formed that have an antimicrobial effect [32] . Oxygen compounds are toxic for both the pathogen and the cell itself, so they are stored in cells within the cell itself. This method of killing penetrating microorganisms is called oxygen-dependent intracellular killing, which is divided into two types [15] .

The first type is the oxygen-dependent formation of a superoxide radical [3] that destroys bacteria [33] . Superoxide is converted to hydrogen peroxide and singlet oxygen by the action of the superoxide dismutase enzyme . Superoxides also interact with hydrogen peroxide to form a hydroxyl group , which helps in the destruction of pathogenic microbes [3] .

The second type includes the use of the enzyme myeloperoxidase from neutrophilic granules [34] . When the granules merge with the phagosome, myeloperoxidase is released into the phagolysosome, and this enzyme uses hydrogen peroxide and chlorine to create hypochlorite . Hypochlorite is extremely toxic to bacteria [3] . Myeloperoxidase contains heme pigment, due to which the green color of secrets rich in neutrophils is formed (for example, pus , infected sputum ) [35] .

Intracellular oxygen-independent path

 
The micropreparation of pus. Visible Gram-stained Neisseria gonorrhoea bacteria inside phagocytes

Phagocytes can also destroy microorganisms with an oxygen-independent method, but it is less effective than an oxygen-dependent one. There are four main types. The first type uses charged proteins that damage the cell membrane of bacteria. The second type uses lysosomal enzymes that destroy the cell wall of bacteria. In the third type, lactoferrins are used, which are present in neutrophil granules and remove the necessary iron from bacteria [36] . In the fourth type, proteases and hydrolases are used to digest proteins of destroyed bacteria [37] .

Extracellular paths

Interferon-gamma (also called macrophage activating factor) activates macrophage synthesis of nitric oxide . The source of interferon-gamma can be CD4 + T-lymphocytes , CD8 + T-lymphocytes , natural killers , B-lymphocytes , T-killers , monocytes , macrophages or dendritic cells [38] . Nitric oxide is then released from macrophages and, due to its toxicity, destroys microbes near the macrophage [3] . Activated macrophages form and secrete tumor necrosis factor . This cytokine (a class of signaling molecules) [39] destroys cancer cells and cells infected with the virus , help activate other cells of the immune system [40] .

In some diseases, for example, in rare chronic granulomatous diseases, the effectiveness of phagocytosis is impaired, which can lead to bacterial infections [41] . With such diseases, there is an anomaly in the work of various elements of oxygen-dependent destruction of microbes. Other rare congenital abnormalities, such , are also associated with defective destruction of microbes that enter the body [42] .

Viruses

Viruses can reproduce only inside the cell, and they penetrate into it, using many receptors involved in immune defense. Once inside the cell, viruses use its biological processes to their advantage, forcing the cell to create thousands of viral particles, similar to the mother. Although phagocytes and other components of the immune system can control viruses to a limited extent when the virus is inside the cell, acquired immunity (in particular, lymphocytes) is more important for protection [43] . In the area of ​​viral infection, lymphocytes accumulate much more than other cells of the immune system, which is most typical for viral meningitis [44] . Virus-infected cells are destroyed by lymphocytes and excreted by phagocytes [45] .

Role in Apoptosis

 
Apoptosis β€” phagocytes cleanse the body of dead cell debris

In animals, plants, and fungi, cells constantly die. The balance between cell division and their death maintains a relatively constant number of cells in adults [2] . There are two mechanisms of cell death: necrosis and apoptosis . Unlike necrosis, which more often occurs as a result of a disease or injury, apoptosis (or programmed cell death) is a normal process that constantly occurs in the body. The body rid itself of millions of dead or dying cells every day and phagocytes play an important role in this process [46] .

A dying cell, which undergoes the final stage of apoptosis [47] , exhibits some specific molecules (for example, phosphatidylserine ) on its surface for connection with a phagocyte [48] . Phosphatidylserine is usually located on the cytosolic surface of the plasma membrane, but is transported during apoptosis to the outer surface, presumably with the help of a protein called [49] . These molecules label a cell for phagocytosis with cells that possess appropriate receptors, such as macrophages [50] . The removal of dead cells by phagocytes occurs in an orderly manner, without causing inflammation [51] .

Interaction with other cells

Phagocytes move in the body, interacting with phagocytic and non-phagocytic cells of the immune system. They exchange information with other cells through the formation of chemicals called cytokines , which cause other phagocytes to the infection area or activate β€œsleeping” lymphocytes [52] . Phagocytes form part of the innate immunity that is present in animals, including humans, from birth. Congenital immunity is very effective, but not specific in determining the difference between types of pathogens. On the other hand, acquired immunity is more specialized and can protect against almost any type of pathogen [53] . Acquired immunity depends on lymphocytes that do not phagocytose, but form protective proteins ( antibodies ) that mark pathogens for destruction and prevent virus infection of cells [54] . Phagocytes, in particular dendritic cells and macrophages, stimulate lymphocytes to form antibodies in an important process called antigen presentation [55] .

Antigen Presentation

 
Presentation scheme of foreign peptides MHC 1 molecules

Antigen presentation is a process in which some phagocytes move parts of the absorbed material back to their surface and β€œprovide” them to other cells of the immune system [56] . There are 2 types of β€œprofessional” antigen-presenting cells: macrophages and dendritic cells [57] . After absorption, foreign proteins (antigens) are degraded to peptides inside the dendritic cell or macrophage.These peptides then bind to glycoproteins of the main histocompatibility complex (MHC) of the cell, which return to the surface of the phagocyte, where they can be β€œpresented” to lymphocytes [16] . Older macrophages are not able to quickly move from the area of ​​infection, but dendritic cells can reach the lymph nodes of the body, where millions of lymphocytes are located [58] . This promotes the development of an immune response because lymphocytes respond to antigens presented by dendritic cells, just as if they were in the primary region of infection [59] . Но Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ‚Π°ΠΊΠΆΠ΅ способны Ρ€Π°Π·Ρ€ΡƒΡˆΠ°Ρ‚ΡŒ ΠΈΠ»ΠΈ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ², Ссли ΠΎΠ½ΠΈ Ρ€Π°ΡΠΏΠΎΠ·Π½Π°ΡŽΡ‚ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ Ρ‚Π΅Π»Π° хозяина; это Π²Π°ΠΆΠ½ΠΎ для прСдупрСТдСния Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ. Π­Ρ‚ΠΎΡ‚ процСсс Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΎΠ»Π΅Ρ€Π°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ [60] .

Π˜ΠΌΠΌΡƒΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Ρ‚ΠΎΠ»Π΅Ρ€Π°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ

Π”Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ‚Π°ΠΊΠΆΠ΅ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ иммунологичСской толСрантности [61] , ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ прСдупрСТдаСтся иммунологичСская Π°Ρ‚Π°ΠΊΠ° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠΌ самого сСбя. ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ Ρ‚ΠΈΠΏ толСрантности β€” . Она Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠ³Π΄Π° ΡΠΎΠ·Ρ€Π΅Π²ΡˆΠΈΠ΅ T-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹ (Π’-ΠΊΠ»Π΅Ρ‚ΠΊΠΈ) Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ выходят ΠΈΠ· тимуса , Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‚ Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹Π΅ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ нСсут Π°Π½Ρ‚ΠΈΠ³Π΅Π½Ρ‹, способныС Π²Ρ‹Π·Π²Π°Ρ‚ΡŒ Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½ΡƒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ. Π’Ρ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΈΠΏ иммунологичСской толСрантности β€” . НСкоторым Π°ΡƒΡ‚ΠΎΡ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ Π’-ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌ удаётся ΠΏΠΎΠΊΠΈΠ½ΡƒΡ‚ΡŒ тимус ΠΏΠΎ ряду ΠΏΡ€ΠΈΡ‡ΠΈΠ½ β€” Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΈΠ·-Π·Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π² тимусС ΠΎΠ½ΠΈ Π½Π΅ экспрСссировали Π°ΡƒΡ‚ΠΎΠ°Π½Ρ‚ΠΈΠ³Π΅Π½Ρ‹. Π”Ρ€ΡƒΠ³ΠΈΠ΅ Π’-ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, извСстныС ΠΊΠ°ΠΊ рСгуляторныС Π’-ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ Π°ΡƒΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ Π’-ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½Π° ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠΈ [62] . Когда иммунологичСская Ρ‚ΠΎΠ»Π΅Ρ€Π°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ Π½Π΅ срабатываСт, ΠΌΠΎΠ³ΡƒΡ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Π΅ заболСвания [63] . Π‘ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Π°Ρ Ρ‚ΠΎΠ»Π΅Ρ€Π°Π½Ρ‚Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ возникновСнию ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π’Π˜Π§-ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ) [62] .

ΠŸΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹

 
Π€Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ ΠΈΠ· стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ костного ΠΌΠΎΠ·Π³Π°

Π€Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‚ Π½Π° Β«ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅Β» ΠΈ Β«Π½Π΅ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅Β» Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π° основС эффСктивности, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠ½ΠΈ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π΅ [9] . К ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°ΠΌ относят ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ , ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ , Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ , Ρ‚ΠΊΠ°Π½Π΅Π²Ρ‹Π΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ Ρ‚ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ [10] .

ΠŸΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ [64]
ОсновноС располоТСниСВарианты Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ²
ΠšΡ€ΠΎΠ²ΡŒΠ½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹, ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹
Bone marrowΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹, , ΠΎΠ±ΠΊΠ»Π°Π΄ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
ΠšΠΎΡΡ‚Π½Π°Ρ Ρ‚ΠΊΠ°Π½ΡŒΠžΡΡ‚Π΅ΠΎΠΊΠ»Π°ΡΡ‚Ρ‹
ΠšΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊ ΠΈ ΠΊΠΈΡˆΠ΅Ρ‡Π½Ρ‹Π΅ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ
Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‚ΠΊΠ°Π½ΡŒ, ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹, Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
ΠŸΠ΅Ρ‡Π΅Π½ΡŒΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠšΡƒΠΏΡ„Π΅Ρ€Π° , ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹
LungsсамовоспроизводящиСся ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹, Ρ‚ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
ЛимфатичСская Ρ‚ΠΊΠ°Π½ΡŒΡΠ²ΠΎΠ±ΠΎΠ΄Π½Ρ‹Π΅ ΠΈ фиксированныС ΠΈ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹, Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
НСрвная Ρ‚ΠΊΠ°Π½ΡŒΠšΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ³Π»ΠΈΠΈ ( CD4 + )
БСлСзёнкасвободныС ΠΈ фиксированныС ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹, синусоидныС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ
ВимуссвободныС ΠΈ фиксированныС ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΈ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹
LeatherпостоянныС ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ЛангСрганса , Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, Ρ‚ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ

Активация

ВсС Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹, особСнно ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, находятся Π² состоянии готовности. ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ пассивны Π² тканях ΠΈ Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ. Π’ Ρ‚Π°ΠΊΠΎΠΌ состоянии полупокоя ΠΎΠ½ΠΈ ΠΎΡ‡ΠΈΡ‰Π°ΡŽΡ‚ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ ΠΎΡ‚ ΠΌΡ‘Ρ€Ρ‚Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ Π½Π΅ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ мусора ΠΈ Ρ€Π΅Π΄ΠΊΠΎ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°ΡŽΡ‚ участиС Π² ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π°. Но ΠΏΡ€ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΎΠ½ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ химичСскиС сигналы (ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ ΠΈΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» MHC II ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‚ ΠΈΡ… ΠΊ ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π°. Π’ Ρ‚Π°ΠΊΠΎΠΌ состоянии ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ β€” Ρ…ΠΎΡ€ΠΎΡˆΠΈΠ΅ Π°Π½Ρ‚ΠΈΠ³Π΅Π½-ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ‚ΠΎΡ€Ρ‹ ΠΈ ΠΊΠΈΠ»Π»Π΅Ρ€Ρ‹. Однако Ссли ΠΎΠ½ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ сигнал прямо ΠΎΡ‚ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π° , ΠΎΠ½ΠΈ становятся Β«Π³ΠΈΠΏΠ΅Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈΒ», ΠΏΡ€Π΅ΠΊΡ€Π°Ρ‰Π°ΡŽΡ‚ Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° ΡƒΠ½ΠΈΡ‡Ρ‚ΠΎΠΆΠ΅Π½ΠΈΠΈ. Π˜Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π° увСличиваСтся; Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ становятся достаточно ΠΊΡ€ΡƒΠΏΠ½Ρ‹ΠΌΠΈ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ³Π»ΠΎΡ‚ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΡ… [65] .

Π’ ΠΊΡ€ΠΎΠ²ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ Π½Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹, Π½ΠΎ двиТутся ΠΏΠΎ Π½Π΅ΠΉ с большой ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ. Когда ΠΎΠ½ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ сигналы ΠΎΡ‚ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² ΠΈΠ· Π·ΠΎΠ½Ρ‹ воспалСния , ΠΎΠ½ΠΈ Π·Π°ΠΌΠ΅Π΄Π»ΡΡŽΡ‚ΡΡ ΠΈ выходят ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ. Π’ тканях ΠΎΠ½ΠΈ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Π°ΠΌΠΈ ΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‚ Π² Π·ΠΎΠ½Ρƒ дСйствия Π³ΠΎΡ‚ΠΎΠ²Ρ‹ΠΌΠΈ ΡƒΠ½ΠΈΡ‡Ρ‚ΠΎΠΆΠ°Ρ‚ΡŒ [66] .

ΠœΠΈΠ³Ρ€Π°Ρ†ΠΈΡ

 
НСйтрофилы выходят ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ Π² Π·ΠΎΠ½Ρƒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ

Когда происходит ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ Π·Π°Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, выдСляСтся химичСский Β«SOSΒ»-сигнал для привлСчСния Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² Π·ΠΎΠ½Ρƒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ [67] . Π­Ρ‚ΠΈ химичСскиС сигналы ΠΌΠΎΠ³ΡƒΡ‚ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ Π±Π΅Π»ΠΊΠΈ ΠΎΡ‚ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, систСмы свёртывания ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄ΠΎΠ² , ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ систСмы ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π° , Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π°ΠΌΠΈ, располоТСнными Π² Ρ‚ΠΊΠ°Π½ΠΈ Π² области ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ [3] . Другая Π³Ρ€ΡƒΠΏΠΏΠ° химичСских Π°Ρ‚Ρ‚Ρ€Π°ΠΊΡ‚Π°Π½Ρ‚ΠΎΠ² β€” Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ ΠΈ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈΠ· кровСносного русла. [14] .

Для достиТСния Π·ΠΎΠ½Ρ‹ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ выходят ΠΈΠ· кровСносного русла ΠΈ ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‚ Π² ΠΏΠΎΡ€Π°ΠΆΡ‘Π½Π½ΡƒΡŽ Ρ‚ΠΊΠ°Π½ΡŒ. Π‘ΠΈΠ³Π½Π°Π»Ρ‹ ΠΎΡ‚ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ синтСз ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ, Π²Ρ‹ΡΡ‚ΠΈΠ»Π°ΡŽΡ‰ΠΈΠ΅ кровСносный сосуд, Π±Π΅Π»ΠΊΠ°, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ сСлСктин , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ сцСпляСтся с проходящими Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Π°ΠΌΠΈ. Π’Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚Π°Ρ‚ΠΎΡ€Ρ‹ ΠΎΡΠ»Π°Π±Π»ΡΡŽΡ‚ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ связи ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, Ρ‡Ρ‚ΠΎ позволяСт Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· стСнку сосуда. Π₯Смотаксис β€” процСсс, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‚ Π½Π° Β«Π·Π°ΠΏΠ°Ρ…Β» Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² ΠΊ области ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ [3] . НСйтрофилы ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‚ Ρ‡Π΅Ρ€Π΅Π· ΠΎΡ€Π³Π°Π½Ρ‹, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΡŒΡŽ, Π² Π·ΠΎΠ½Ρƒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ, ΠΈ, хотя это Π²Π°ΠΆΠ½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π±ΠΎΡ€ΡŒΠ±Ρ‹ с ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ, миграция сама ΠΏΠΎ сСбС ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ возникновСнию симптомов заболСвания [68] . ΠŸΡ€ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Ρ‹ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ, Π½ΠΎ ΠΎΠ½ΠΈ ΠΏΠΎΠ³ΠΈΠ±Π°ΡŽΡ‚ Π·Π°Ρ‚Π΅ΠΌ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄Π½Π΅ΠΉ [69] .

ΠœΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹

 
ΠœΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ с Π΄ΠΎΠ»ΡŒΡ‡Π°Ρ‚Ρ‹ΠΌ ядром Π² ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠΈ красных кровяных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (ΠΌΠ°Π»ΠΎΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅)

ΠœΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π² костном ΠΌΠΎΠ·Π³Π΅ ΠΈ Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ зрСлости Π² ΠΊΡ€ΠΎΠ²ΠΈ. Π—Ρ€Π΅Π»Ρ‹Π΅ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΊΡ€ΡƒΠΏΠ½ΠΎΠ΅, Π³Π»Π°Π΄ΠΊΠΎΠ΅, Π΄ΠΎΠ»ΡŒΡ‡Π°Ρ‚ΠΎΠ΅ ядро ΠΈ Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΡƒ , которая содСрТит Π³Ρ€Π°Π½ΡƒΠ»Ρ‹. ΠœΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‚ Ρ‡ΡƒΠΆΠ΅Ρ€ΠΎΠ΄Π½Ρ‹Π΅ ΠΈΠ»ΠΈ опасныС вСщСства ΠΈ ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Ρ‹ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы. ΠœΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ 2 Π³Ρ€ΡƒΠΏΠΏΡ‹: Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ ΠΈ краСвая, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… тканях (ΠΎΠΊΠΎΠ»ΠΎ 70 % находятся Π² ΠΊΡ€Π°Π΅Π²ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅). Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΠΎΠΊΠΈΠ΄Π°ΡŽΡ‚ кровСносноС русло Ρ‡Π΅Ρ€Π΅Π· 20β€”40 часов, попадая Π² Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ ΠΎΡ€Π³Π°Π½Ρ‹, Π³Π΄Π΅ ΠΎΠ½ΠΈ ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π°ΡŽΡ‚ΡΡ Π² ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ [70] ΠΈΠ»ΠΈ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π² зависимости ΠΎΡ‚ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ сигнала [71] . Π’ 1 Π»ΠΈΡ‚Ρ€Π΅ ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° находится ΠΎΠΊΠΎΠ»ΠΎ 500 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² [13] .

ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ

Π—Ρ€Π΅Π»Ρ‹Π΅ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ Π΄Π°Π»Π΅ΠΊΠΎ, Π½ΠΎ стоят Π½Π° страТС Π² Ρ‚Π΅Ρ… областях ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Ρ‹ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ внСшнСй срСды. Π’Π°ΠΌ ΠΎΠ½ΠΈ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠ°ΠΊ сборщики мусора, Π°Π½Ρ‚ΠΈΠ³Π΅Π½-ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈΠ»ΠΈ агрСссивныС ΠΊΠΈΠ»Π»Π΅Ρ€Ρ‹, Π² зависимости ΠΎΡ‚ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ сигнала [72] . Они ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ ΠΈΠ· ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ², стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡƒΠΆΠ΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² [73] . ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ Π² Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π΅ ΠΎΠΊΠΎΠ»ΠΎ 21 ΠΌΠΈΠΊΡ€ΠΎΠΌΠ΅Ρ‚Ρ€Π° [74] .

 
Π“Π½ΠΎΠΉ выдСляСтся ΠΈΠ· абсцСсса , Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠ³ΠΎ бактСриями (Π³Π½ΠΎΠΉ содСрТит ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Ρ‹ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ²)

Π­Ρ‚ΠΎΡ‚ Π²ΠΈΠ΄ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π³Ρ€Π°Π½ΡƒΠ», Π½ΠΎ содСрТит ΠΌΠ½ΠΎΠ³ΠΎ лизосом . ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ находятся ΠΏΠΎ всСму Ρ‚Π΅Π»Ρƒ ΠΏΠΎΡ‡Ρ‚ΠΈ Π²ΠΎ всСх тканях ΠΈ ΠΎΡ€Π³Π°Π½Π°Ρ… (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ³Π»ΠΈΠΈ Π² Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠΌ ΠΌΠΎΠ·Π³Π΅ ΠΈ Π°Π»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½Ρ‹Π΅ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ Π² Π»Ρ‘Π³ΠΊΠΈΡ… ). РасполоТСниС ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ Π΅Π³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρƒ ΠΈ Π²Π½Π΅ΡˆΠ½Π΅ΠΌΡƒ Π²ΠΈΠ΄Ρƒ. ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ воспалСниС ΠΏΡƒΡ‚Ρ‘ΠΌ образования ΠΈΠ½Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½Π° 1 , ΠΈΠ½Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½Π° 6 ΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ [75] . ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ находятся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² тканях ΠΈ Ρ€Π΅Π΄ΠΊΠΎ ΠΏΠΎΠΏΠ°Π΄Π°ΡŽΡ‚ Π² ΠΊΡ€ΠΎΠ²ΠΎΡ‚ΠΎΠΊ. ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΆΠΈΠ·Π½ΠΈ Ρ‚ΠΊΠ°Π½Π΅Π²Ρ‹Ρ… ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ², ΠΏΠΎ Ρ€Π°Π·Π½Ρ‹ΠΌ ΠΎΡ†Π΅Π½ΠΊΠ°ΠΌ, составляСт ΠΎΡ‚ 4 Π΄ΠΎ 5 Π΄Π½Π΅ΠΉ [76] .

ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ для выполнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ покоящийся ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ [75] . Π’-Ρ…Π΅Π»ΠΏΠ΅Ρ€Ρ‹ β€” ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ° Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ², ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΡ… Π·Π° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ². Они Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ, посылая сигнал Π² Π²ΠΈΠ΄Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½Π° Π³Π°ΠΌΠΌΠ° ΠΈ экспрСссируя Π±Π΅Π»ΠΎΠΊ CD154 [77] . Π”Ρ€ΡƒΠ³ΠΈΠ΅ сигналы ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‚ ΠΎΡ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π² Π²ΠΈΠ΄Π΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π°Π»ΡŒΡ„Π° ΠΈ липополисахаридов [75] . Π’-Ρ…Π΅Π»ΠΏΠ΅Ρ€Ρ‹ способны ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ Π² Π·ΠΎΠ½Ρƒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ нСсколькими путями. Они Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π° костный ΠΌΠΎΠ·Π³ , стимулируя ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹ , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‚ Π·Π° ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΡŽ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² Π² кровяноС русло [78] . Π’-Ρ…Π΅Π»ΠΏΠ΅Ρ€Ρ‹ ΠΏΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅ CD4 + Π’ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚ΠΎΠ², ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΈ Ρ€Π΅Π°Π³ΠΈΡ€ΡƒΡŽΡ‚ Π½Π° дСйствиС Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π° Π² пСрифСричСских лимфатичСских тканях . АктивированныС ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΏΡƒΡ‚Ρ‘ΠΌ образования Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π°Π»ΡŒΡ„Π°, Π³Π°ΠΌΠΌΠ°-ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ€ΠΎΠ½Π°, оксида Π°Π·ΠΎΡ‚Π° , Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода, ΠΊΠ°Ρ‚ΠΈΠΎΠ½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² ΠΈ гидролитичСских Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² [75] .

НСйтрофилы

 
БСгмСнтоядСрный Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ» (Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅) Π² ΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠΈ эритроцитов , Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ Π²ΠΈΠ΄Π½Ρ‹ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π³Ρ€Π°Π½ΡƒΠ»Ρ‹ ( окраска ΠΏΠΎ Романовскому β€” Π“ΠΈΠΌΠ·Π΅ )

НСйтрофилы ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ находятся Π² кровСносном руслС ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ распространённым Ρ‚ΠΈΠΏΠΎΠΌ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², составляя 50β€”60 % ΠΎΡ‚ всСх Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π² ΠΊΡ€ΠΎΠ²ΠΈ Π±Π΅Π»Ρ‹Ρ… кровяных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ [79] . Один Π»ΠΈΡ‚Ρ€ ΠΊΡ€ΠΎΠ²ΠΈ взрослого Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π² Π½ΠΎΡ€ΠΌΠ΅ содСрТит ΠΎΠΊΠΎΠ»ΠΎ 2,5β€”7,5 ΠΌΠΈΠ»Π»ΠΈΠ°Ρ€Π΄ΠΎΠ² Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² [13] . Π˜Ρ… Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ составляСт ΠΎΠΊΠΎΠ»ΠΎ 10 ΠΌΠΊΠΌ [80] , ΠΈ ΠΆΠΈΠ²ΡƒΡ‚ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 5 Π΄Π½Π΅ΠΉ [40] . Как Ρ‚ΠΎΠ»ΡŒΠΊΠΎ поступаСт ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ сигнал, ΠΎΠ½ΠΈ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 30 ΠΌΠΈΠ½ΡƒΡ‚ выходят ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ Π·ΠΎΠ½Ρ‹ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ [81] . Они способны быстро ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Ρ‚ΡŒ Ρ‡ΡƒΠΆΠ΅Ρ€ΠΎΠ΄Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π». НСйтрофилы Π½Π΅ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°ΡŽΡ‚ΡΡ Π² ΠΊΡ€ΠΎΠ²ΡŒ, Π° ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π°ΡŽΡ‚ΡΡ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ гноя ΠΈ ΠΏΠΎΠ³ΠΈΠ±Π°ΡŽΡ‚ [81] . Π—Ρ€Π΅Π»Ρ‹Π΅ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ мСньшС, Ρ‡Π΅ΠΌ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹, ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ сСгмСнтированныС ядра с нСсколькими сСкциями; каТдая сСкция соСдиняСтся с Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½ΠΎΠ²Ρ‹ΠΌΠΈ нитями (Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ» ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ 2β€”5 сСгмСнтов). ΠžΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ Π½Π΅ выходят ΠΈΠ· костного ΠΌΠΎΠ·Π³Π° Π΄ΠΎ наступлСния зрСлости, Π½ΠΎ ΠΏΡ€ΠΈ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π²Ρ‹ΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ Π² ΠΊΡ€ΠΎΠ²ΡŒ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² β€” ΠΌΠΈΠ΅Π»ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈ ΠΏΡ€ΠΎΠΌΠΈΠ΅Π»ΠΎΡ†ΠΈΡ‚Ρ‹ [82] .

Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π³Ρ€Π°Π½ΡƒΠ»Ρ‹ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ ΠΈ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΡ†ΠΈΠ΄Π½Ρ‹ΠΌΠΈ свойствами [83] . НСйтрофилы способны Π²Ρ‹Π΄Π΅Π»ΡΡ‚ΡŒ вСщСства, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ. ΠΠ΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹Π΅ выдСлСния ΡƒΡΠΈΠ»ΠΈΠ²Π°ΡŽΡ‚ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ· ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода, участвуя Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ Π²ΠΎ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ ΡƒΠ½ΠΈΡ‡Ρ‚ΠΎΠΆΠ΅Π½ΠΈΠΈ [84] . ВыдСлСния ΠΎΡ‚ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Π³Ρ€Π°Π½ΡƒΠ» Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ· Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹Ρ… [85] .

Π”Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ

 
ДСндритная ΠΊΠ»Π΅Ρ‚ΠΊΠ°

Π”Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ β€” спСциализированныС Π°Π½Ρ‚ΠΈΠ³Π΅Π½-ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΅ΡΡ‚ΡŒ Π΄Π»ΠΈΠ½Π½Ρ‹Π΅ отростки, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π°ΠΌΠΈ [86] , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠΌΠΎΠ³Π°ΡŽΡ‚ ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Ρ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΎΠ² [87] [88] . Π”Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ находятся Π² тканях, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‚ с ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСдой, Π² основном Π² ΠΊΠΎΠΆΠ΅ , Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠ΅ носа, Π»Ρ‘Π³ΠΊΠΈΡ… , ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ° ΠΈ ΠΊΠΈΡˆΠ΅Ρ‡Π½ΠΈΠΊΠ° [89] . ПослС Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΎΠ½ΠΈ ΡΠΎΠ·Ρ€Π΅Π²Π°ΡŽΡ‚ ΠΈ ΠΌΠΈΠ³Ρ€ΠΈΡ€ΡƒΡŽΡ‚ Π² лимфатичСскиС Ρ‚ΠΊΠ°Π½ΠΈ, Π³Π΄Π΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с Π’- ΠΈ B-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ для возникновСния ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Ρ‘Π½Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° [90] .

Π—Ρ€Π΅Π»Ρ‹Π΅ Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‚ Π’-Ρ…Π΅Π»ΠΏΠ΅Ρ€Ρ‹ ΠΈ Π’-ΠΊΠΈΠ»Π»Π΅Ρ€Ρ‹ [91] . АктивированныС Π’-Ρ…Π΅Π»ΠΏΠ΅Ρ€Ρ‹ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π°ΠΌΠΈ ΠΈ B-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ Ρ‡Ρ‚ΠΎΠ±Ρ‹, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ…. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ способны Π²Π»ΠΈΡΡ‚ΡŒ Π½Π° Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π°; ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ Π² лимфатичСскиС Π·ΠΎΠ½Ρ‹, ΠΎΠ½ΠΈ способны Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ находящиСся Ρ‚Π°ΠΌ Π’-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π·Π°Ρ‚Π΅ΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΡŽΡ‚ Π² Π’-ΠΊΠΈΠ»Π»Π΅Ρ€Ρ‹ ΠΈ Π’-Ρ…Π΅Π»ΠΏΠ΅Ρ€Ρ‹ [92]

Π’ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ

Π’ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Toll-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ ΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ с Π΄Π΅Π½Π΄Ρ€ΠΈΡ‚Π½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ, Π’- ΠΈ B-Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ. Π’ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡƒΡŽΡ‚ MHC класса II ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ участиС Π² ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π°; ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ€ΠΎΠ»ΡŒ Ρ‚ΡƒΡ‡Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π° Π΅Ρ‰Ρ‘ Π½Π΅ достаточно ΠΈΠ·ΡƒΡ‡Π΅Π½Π° [93] . Π’ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ способны ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Ρ‚ΡŒ, ΡƒΠ±ΠΈΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°ΠΌΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΡΠ°Π»ΡŒΠΌΠΎΠ½Π΅Π»Π»Ρƒ ) ΠΈ ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΈΡ… Π°Π½Ρ‚ΠΈΠ³Π΅Π½Ρ‹ [94] Они ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Ρ„ΠΈΠΌΠ±Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π½Π° повСрхности Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π² ΠΏΡ€ΠΈΠΊΡ€Π΅ΠΏΠ»Π΅Π½ΠΈΠΈ ΠΊ тканям [95] [96] . ΠšΡ€ΠΎΠΌΠ΅ этих Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚ΡƒΡ‡Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π·Π°ΠΏΡƒΡΠΊΠ°ΡŽΡ‚ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ воспалСния [97] . Π­Ρ‚ΠΎ ваТная Ρ‡Π°ΡΡ‚ΡŒ уничтоТСния ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΎΠ², ΠΏΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Ρ‹ ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°ΡŽΡ‚ большС Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊ Π·ΠΎΠ½Π΅ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ [94] .

ΠΠ΅ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹

Π£ΠΌΠΈΡ€Π°ΡŽΡ‰ΠΈΠ΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ Ρ‡ΡƒΠΆΠ΅Ρ€ΠΎΠ΄Π½Ρ‹Π΅ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‚ΡΡ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ, ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΡ‚ Β«ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ…Β» Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² [98] . К Ρ‚Π°ΠΊΠΈΠΌ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌ относят ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ , ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ , ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΠ°Ρ‚ΠΎΠ·Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ фибробласты . Π˜Ρ… Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π΅ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠ½ΡƒΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ· для Π½ΠΈΡ… Π½Π΅ являСтся основной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ [99] . Ѐибробласты, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠΎΠ»Π»Π°Π³Π΅Π½ Π² процСссС рассасывания Ρ€ΡƒΠ±Ρ†ΠΎΠ², Ρ‚Π°ΠΊΠΆΠ΅ способны частично ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Ρ‚ΡŒ Ρ‡ΡƒΠΆΠ΅Ρ€ΠΎΠ΄Π½Ρ‹Π΅ частицы [100] .

ΠΠ΅ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Ρ‹, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅, Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ частиц, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ³Π»ΠΎΡ‚ΠΈΡ‚ΡŒ. Π­Ρ‚ΠΎ связано с отсутствиСм Ρƒ Π½ΠΈΡ… эффСктивных Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ², Π² частности, опсонинов [12] . ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ Π½Π΅ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π½Π΅ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ кислород-содСрТащиС ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ для Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π° [101] .

ΠΠ΅ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ [64]
ОсновноС располоТСниСВарианты Ρ„Π΅Π½ΠΎΡ‚ΠΈΠΏΠΎΠ²
ΠšΡ€ΠΎΠ²ΡŒ, Π»ΠΈΠΌΡ„Π° ΠΈ лимфатичСскиС ΡƒΠ·Π»Ρ‹Lymphocytes
ΠšΡ€ΠΎΠ²ΡŒ, Π»ΠΈΠΌΡ„Π° ΠΈ лимфатичСскиС узлыЕстСствСнныС ΠΊΠΈΠ»Π»Π΅Ρ€Ρ‹ ΠΈ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅ гранулярныС Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹
LeatherΠ­ΠΏΠΈΡ‚Π΅Π»ΠΈΠΎΡ†ΠΈΡ‚Ρ‹
Blood vesselsΠ­Π½Π΄ΠΎΡ‚Π΅Π»ΠΈΠΎΡ†ΠΈΡ‚Ρ‹
Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ‚ΠΊΠ°Π½ΡŒΠ€ΠΈΠ±Ρ€ΠΎΠ±Π»Π°ΡΡ‚Ρ‹
ΠšΡ€ΠΎΠ²ΡŒΠ­Ρ€ΠΈΡ‚Ρ€ΠΎΡ†ΠΈΡ‚Ρ‹

Π£ΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π°

 
ΠšΠ»Π΅Ρ‚ΠΊΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Staphylococcus aureus : ΠΊΡ€ΡƒΠΏΠ½Ρ‹Π΅, волокнистыС капсулы, Π·Π°Ρ‰ΠΈΡ‰Π°ΡŽΡ‰ΠΈΠ΅ ΠΎΡ‚ Π°Ρ‚Π°ΠΊΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ²

ΠŸΠ°Ρ‚ΠΎΠ³Π΅Π½ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΡŽ, Ссли Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ½ ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π» Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Π΅ Ρ€ΡƒΠ±Π΅ΠΆΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. ΠŸΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΈ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ устойчивости ΠΊ Π°Ρ‚Π°ΠΊΠ°ΠΌ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ ΠΈΠ· Π½ΠΈΡ… Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹ΠΆΠΈΠ²Π°ΡŽΡ‚ ΠΈ Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ [102] [103] .

ИзбСТаниС ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π°

Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π΅ΡΡ‚ΡŒ нСсколько способов ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° с Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ. Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΆΠΈΡ‚ΡŒ Π² мСстах, ΠΊΡƒΠ΄Π° Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ Π½Π΅ способны ΠΏΠΎΠΏΠ°ΡΡ‚ΡŒ (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Ρ‘Π½Π½Ρ‹ΠΉ ΠΊΠΎΠΆΠ½Ρ‹ΠΉ ΠΏΠΎΠΊΡ€ΠΎΠ²). Π’ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, бактСрия ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠ΄Π°Π²Π»ΡΡ‚ΡŒ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ воспалСния; Π±Π΅Π· воспалСния Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ Π½Π΅ способны Ρ€Π΅Π°Π³ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΡŽ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½ΠΎ. Π’-Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΡ…, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π°ΠΌΠ΅Π΄Π»ΡΡ‚ΡŒ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒΡΡ Π² Π·ΠΎΠ½Ρƒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ, прСпятствуя хСмотаксису [102] . Π’-Ρ‡Π΅Ρ‚Π²Ρ‘Ρ€Ρ‚Ρ‹Ρ…, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ способны ΠΈΠ·Π±Π΅Π³Π°Ρ‚ΡŒ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π° с Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠΌ ΠΏΡƒΡ‚Ρ‘ΠΌ ΠΎΠ±ΠΌΠ°Π½Π° ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы, которая Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Β«Π΄ΡƒΠΌΠ°Ρ‚ΡŒΒ», Ρ‡Ρ‚ΠΎ бактСрия β€” ΠΊΠ»Π΅Ρ‚ΠΊΠ° самого ΠΌΠ°ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. БлСдная Ρ‚Ρ€Π΅ΠΏΠΎΠ½Π΅ΠΌΠ° (бактСрия, Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰Π°Ρ сифилис ) скрываСтся ΠΎΡ‚ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², покрывая свою ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΈΠ±Ρ€ΠΎΠ½Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠΌ [104] , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ СстСствСнно образуСтся Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΈ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Π·Π°ΠΆΠΈΠ²Π»Π΅Π½ΠΈΠΈ Ρ€Π°Π½Ρ‹ [105] .

ИзбСТаниС поглощСния

Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ часто ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ ΠΈΠ»ΠΈ сахара, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠΊΡ€Ρ‹Π²Π°ΡŽΡ‚ ΠΈΡ… ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈ ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Ρƒ; ΠΎΠ½ΠΈ входят Π² состав Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ капсулы [102] . НапримСр, K5 ΠΊΠ°ΠΏΡΡƒΠ»ΡŒΠ½Ρ‹ΠΉ Π°Π½Ρ‚ΠΈΠ³Π΅Π½ ΠΈ O75 O-Π°Π½Ρ‚ΠΈΠ³Π΅Π½ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π° повСрхности Escherichia coli [106] ΠΈ капсул [107] . ПнСвмококк ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ нСсколько Ρ‚ΠΈΠΏΠΎΠ² капсул, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΡƒΡ€ΠΎΠ²Π½ΠΈ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ [108] , Π° стрСптококки Π³Ρ€ΡƒΠΏΠΏΡ‹ А ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ M-Π±Π΅Π»ΠΎΠΊ ΠΈ Ρ„ΠΈΠΌΠ±Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Π»ΠΎΠΊΠΈΡ€ΡƒΡŽΡ‚ процСсс поглощСния. НСкоторыС Π±Π΅Π»ΠΊΠΈ ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ опсонин-связанному ΠΏΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΡŽ; Staphylococcus aureus ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ Π±Π΅Π»ΠΎΠΊ А для блокирования Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² Π°Π½Ρ‚ΠΈΡ‚Π΅Π», Ρ‡Ρ‚ΠΎ сниТаСт ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ опсонинов [109] .

Π’Ρ‹ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°

 
РиккСтсия (красный Ρ†Π²Π΅Ρ‚), которая ΠΆΠΈΠ²Ρ‘Ρ‚ Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ Π½Π΅ΠΏΡ€ΠΎΡ„Π΅ΡΡΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°

Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Ρ€Π°Π·Π²ΠΈΡ‚Ρ‹ способы выТивания Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², Π³Π΄Π΅ ΠΎΠ½ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‚ ΡƒΠΊΠ»ΠΎΠ½ΡΡ‚ΡŒΡΡ ΠΎΡ‚ ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы [110] . Для бСзопасного проникновСния Π²Π½ΡƒΡ‚Ρ€ΡŒ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π° ΠΎΠ½ΠΈ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Π±Π΅Π»ΠΊΠΈ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ Β«ΠΈΠ½Π²Π°Π·ΠΈΠ½Π°ΠΌΠΈΒ». Оказавшись Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ΠΎΠ½ΠΈ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅ ΠΈ ΠΈΠ·Π±Π΅Π³Π°ΡŽΡ‚ воздСйствия токсичСских вСщСств, содСрТащихся Π² фаголизосомах [111] . НСкоторыС Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ слиянию фагосомы ΠΈ лизосомы [102] . Π”Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Ρ‹, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, лСйшмании , ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ высокомодифицированныС Π²Π°ΠΊΡƒΠΎΠ»ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², Ρ‡Ρ‚ΠΎ позволяСт ΠΈΠΌ ΡΠΎΡ…Ρ€Π°Π½ΡΡ‚ΡŒ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΈ Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ°Ρ‚ΡŒΡΡ [112] . Legionella pneumophila ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ сСкрСт, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ заставляСт Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ ΡΠ»ΠΈΠ²Π°Ρ‚ΡŒΡΡ с Π²Π΅Π·ΠΈΠΊΡƒΠ»Π°ΠΌΠΈ , ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΡ‚ Ρ‚Π΅Ρ…, Ρ‡Ρ‚ΠΎ содСрТат токсичныС вСщСства [113] . Π”Ρ€ΡƒΠ³ΠΈΠ΅ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ способны ΠΆΠΈΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈ фаголизосом. Staphylococcus aureus , Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΊΠ°Ρ‚Π°Π»Π°Π·Π° ΠΈ супСроксиддисмутаза , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‚ химичСскиС вСщСства (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, пСроксид Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° ), ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌΡ‹Π΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ для уничтоТСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ [114] . Π‘Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΈΠ· фагосомы ΠΏΠ΅Ρ€Π΅Π΄ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ фаголизосомы: способна ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ отвСрстиС Π² стСнкС фагосомы, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ ΠΈ фосфолипаза C [115] .

Π£Π½ΠΈΡ‡Ρ‚ΠΎΠΆΠ΅Π½ΠΈΠ΅

Π£ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Ρ€Π°Π·Π²ΠΈΡ‚Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ способы уничтоТСния Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² [109] . К Π½ΠΈΠΌ относятся , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΏΠΎΡ€Ρ‹ Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π΅ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², стрСптолизины ΠΈ Π»Π΅ΠΉΠΊΠΎΡ†ΠΈΠ΄ΠΈΠ½Ρ‹ , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ€Π°Π·Ρ€Ρ‹Π² Π³Ρ€Π°Π½ΡƒΠ» Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² освобоТдСниС токсичСских вСщСств [116] [117] , ΠΈ экзотоксины , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ поступлСния АВЀ для Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ², Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… для Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π°. Π‘ΡƒΠ΄ΡƒΡ‡ΠΈ ΠΏΠΎΠ³Π»ΠΎΡ‰Ρ‘Π½Π½Ρ‹ΠΌΠΈ, Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΠ±ΠΈΠ²Π°Ρ‚ΡŒ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹, высвобоТдая токсины, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ ΠΈΠ· ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ фагосом ΠΈΠ»ΠΈ фаголизосом ΠΊ Π΄Ρ€ΡƒΠ³ΠΈΠΌ частям ΠΊΠ»Π΅Ρ‚ΠΊΠΈ [102] .

ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигнала Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅

 
Амастиготы Leishmania tropica (ΡƒΠΊΠ°Π·Π°Π½Ρ‹ стрСлками) Π² ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π°Ρ… ΠΊΠΎΠΆΠΈ

НСкоторыС стратСгии выТивания часто связаны с Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигнала Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ для прСдотвращСния Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π½Π° инвазию [118] . Π’Π°ΠΊΠΈΠ΅ паразитичСскиС ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅, ΠΊΠ°ΠΊ Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Toxoplasma gondii , Trypanosoma cruzi ΠΈ Leishmania , ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ; ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· Π½ΠΈΡ… ΠΈΠΌΠ΅Π΅Ρ‚ ΡƒΠ½ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ способ подавлСния активности ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ². НСкоторыС Π²ΠΈΠ΄Ρ‹ лСйшманий ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ систСму сигналов ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ², ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΡŽ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΎΡ†ΠΈΠ΄Π½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» (оксида Π°Π·ΠΎΡ‚Π°, Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода) ΠΈ Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‚ ΠΏΡ€Π΅Π·Π΅Π½Ρ‚Π°Ρ†ΠΈΡŽ Π°Π½Ρ‚ΠΈΠ³Π΅Π½Π° [119] .

ΠŸΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ

ΠœΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΈ ΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹, Π² частности, ΠΈΠ³Ρ€Π°ΡŽΡ‚ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ процСссС ΠΏΡƒΡ‚Ρ‘ΠΌ высвобоТдСния Π±Π΅Π»ΠΊΠΎΠ² ΠΈ низкомолСкулярных Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΡŽ, Π½ΠΎ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π°Ρ‚ΡŒ Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠ°ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. Π’ ΠΎΠ±Ρ‰Π΅ΠΌ, Ρ†Π΅Π»ΡŒ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² β€” Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΎΠ² ΠΏΡƒΡ‚Ρ‘ΠΌ поглощСния ΠΈΡ… ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ воздСйствия Π½Π° Π½ΠΈΡ… токсичными вСщСствами Π²Π½ΡƒΡ‚Ρ€ΠΈ фаголизосом. Если Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ Π½Π΅ Π² состоянии ΠΏΠΎΠ³Π»ΠΎΡ‚ΠΈΡ‚ΡŒ свою Ρ†Π΅Π»ΡŒ, эти токсичСскиС Π°Π³Π΅Π½Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ Π² ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду (дСйствиС называСтся «фрустрированный Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Β»). Π’Π°ΠΊ ΠΊΠ°ΠΊ эти Π°Π³Π΅Π½Ρ‚Ρ‹ токсичны ΠΈ для ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ°ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°, ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹Π·Π²Π°Ρ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π·Π΄ΠΎΡ€ΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ Ρ‚ΠΊΠ°Π½Π΅ΠΉ [120] .

Если Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ ΠΎΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π°ΡŽΡ‚ содСрТимоС Π³Ρ€Π°Π½ΡƒΠ» (Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡ‹ кислорода ΠΈ ΠΏΡ€ΠΎΡ‚Π΅Π°Π·Ρ‹ ) Π² ΠΏΠΎΡ‡ΠΊΠ°Ρ… , Ρ‚ΠΎ происходит дСградация Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ матрикса ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΡŽ ΠΊΠ»ΡƒΠ±ΠΎΡ‡ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, влияя Π½Π° ΠΈΡ… ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΡ€ΠΎΠ²ΡŒ ΠΈ вызывая измСнСния Π² ΠΈΡ… Ρ„ΠΎΡ€ΠΌΠ΅. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ фосфолипазы (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π»Π΅ΠΉΠΊΠΎΡ‚Ρ€ΠΈΠ΅Π½Ρ‹ ) ΡƒΡΠΈΠ»ΠΈΠ²Π°ΡŽΡ‚ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅. Π­Ρ‚ΠΎ освобоТдСниС вСщСств способствуСт хСмотаксису большСго количСства Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² Π² Π·ΠΎΠ½Ρƒ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ, ΠΈ ΠΊΠ»ΡƒΠ±ΠΎΡ‡ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Ρ‹ Π΅Ρ‰Ρ‘ сильнСС ΠΏΡƒΡ‚Ρ‘ΠΌ прикрСплСния ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΏΡ€ΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ². ΠŸΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΡ ΠΊΠ»ΡƒΠ±ΠΎΡ‡ΠΊΠΎΠ²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ нСдостаточности [121] .

НСйтрофилы Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ³Ρ€Π°ΡŽΡ‚ ΠΊΠ»ΡŽΡ‡Π΅Π²ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Ρ„ΠΎΡ€ΠΌ острого поврСТдСния Π»Ρ‘Π³ΠΊΠΈΡ… [122] . ΠŸΡ€ΠΈ этом Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Ρ‹ Π²Ρ‹ΡΠ²ΠΎΠ±ΠΎΠΆΠ΄Π°ΡŽΡ‚ содСрТимоС своих токсичных Π³Ρ€Π°Π½ΡƒΠ» Π² Π»Ρ‘Π³ΠΊΠΈΡ… [123] . ЭкспСримСнты ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ числа Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² ΡΠ½ΠΈΠΆΠ°ΡŽΡ‚ эффСкты острого поврСТдСния Π»Ρ‘Π³ΠΊΠΈΡ… [124] , Π½ΠΎ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»ΠΎΠ² клиничСски Π½Π΅ рСалистично, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ этом ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ становится уязвим для ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ [123] . Π’ ΠΏΠ΅Ρ‡Π΅Π½ΠΈ , ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅ΠΉΡ‚Ρ€ΠΎΡ„ΠΈΠ»Π°ΠΌΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ дисфункции ΠΈ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΡŽ Π² ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° освобоТдСниС эндотоксина , выдСляСмого Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ΅ΠΉ, сСпсис , Ρ‚Ρ€Π°Π²ΠΌΡƒ, , ишСмию ΠΈ гиповолСмичСский шок Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ острой ΠΊΡ€ΠΎΠ²ΠΎΠΏΠΎΡ‚Π΅Ρ€ΠΈ [125] .

Π₯имичСскиС вСщСства, высвобоТдаСмыС ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π°ΠΌΠΈ, ΠΌΠΎΠ³ΡƒΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π°Ρ‚ΡŒ Ρ‚ΠΊΠ°Π½ΠΈ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. Π€Π°ΠΊΡ‚ΠΎΡ€ Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ -Ξ± (ЀНО-Ξ±) β€” Π²Π°ΠΆΠ½ΠΎΠ΅ химичСскоС вСщСство, выдСляСмоС ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡΠ²Ρ‘Ρ€Ρ‚Ρ‹Π²Π°Π½ΠΈΡŽ ΠΊΡ€ΠΎΠ²ΠΈ Π² ΠΌΠ΅Π»ΠΊΠΈΡ… сосудах, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ распространСниС ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ [126] . Однако, Ссли Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ инфСкция ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°Π΅Ρ‚ Π² ΠΊΡ€ΠΎΠ²ΡŒ, ЀНО-Ξ± выдСляСтся Π² ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎ Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½Π°Ρ…, Π³Π΄Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π·Π²Π°Ρ‚ΡŒ Π²Π°Π·ΠΎΠ΄ΠΈΠ»Π°Ρ‚Π°Ρ†ΠΈΡŽ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΡ‚ΡŒ ΠΎΠ±ΡŠΡ‘ΠΌ ΠΏΠ»Π°Π·ΠΌΡ‹ ; это, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ сСптичСскому ΡˆΠΎΠΊΡƒ . ΠŸΡ€ΠΈ сСптичСском шокС высвобоТдСниС ЀНО-Ξ± Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ Π±Π»ΠΎΠΊΠ°Π΄Ρƒ ΠΌΠ΅Π»ΠΊΠΈΡ… сосудов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ½Π°Π±ΠΆΠ°ΡŽΡ‚ ΠΊΡ€ΠΎΠ²ΡŒΡŽ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎ Π²Π°ΠΆΠ½Ρ‹Π΅ ΠΎΡ€Π³Π°Π½Ρ‹, ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ ΠΈΡ… Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ. БСптичСский шок ΠΌΠΎΠΆΠ΅Ρ‚ привСсти ΠΊ смСрти [14] .

Π­Π²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ происхоТдСниС

Π€Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·, вСроятно, появился Π½Π° Ρ€Π°Π½Π½ΠΈΡ… этапах ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΈ [127] , Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΠ² Ρƒ ΠΎΠ΄Π½ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… эукариот [128] . Амёбы β€” ΠΎΠ΄Π½ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠ΅ , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚Π΄Π΅Π»ΠΈΠ»ΠΈΡΡŒ ΠΎΡ‚ Π΄Π΅Ρ€Π΅Π²Π°, Π²Π΅Π΄ΡƒΡ‰Π΅Π³ΠΎ ΠΊ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌ, Π½ΠΎ ΠΎΠ½ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Π»ΠΈ мноТСство спСцифичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½Ρ‹ΠΌ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… [128] . Π‘Π»ΠΈΠ·Π΅Π²ΠΈΠΊ Dictyostelium discoideum , Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΆΠΈΠ²Ρ‘Ρ‚ Π² ΠΏΠΎΡ‡Π²Π΅ ΠΈ питаСтся бактСриями. Как ΠΈ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΎΠ½ ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Π΅Ρ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΏΡƒΡ‚Ρ‘ΠΌ Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ·Π° Π² основном с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Toll-ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² [129] . Амёбы Dictyostelium discoideum ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½Ρ‹; ΠΎΠ½ΠΈ ΡΠ»ΠΈΠΏΠ°ΡŽΡ‚ΡΡ вмСстС, ΠΊΠΎΠ³Π΄Π° Π³ΠΎΠ»ΠΎΠ΄Π°ΡŽΡ‚, ΠΏΡ€Π΅Π²Ρ€Π°Ρ‰Π°ΡΡΡŒ Π² ΠΌΠΈΠ³Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ псСвдоплазмодий. Π’Π°ΠΊΠΎΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Π² ΠΈΡ‚ΠΎΠ³Π΅ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΎΠ΅ Ρ‚Π΅Π»ΠΎ со спорами, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ устойчиво ΠΊ агрСссии ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды. ΠŸΠ΅Ρ€Π΅Π΄ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ»ΠΎΠ΄ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Π» ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ слизСвики Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… Π΄Π½Π΅ΠΉ. Π’ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ этого Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ воздСйствиС токсинов ΠΈΠ»ΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ для выТивания Π°ΠΌΡ‘Π±, ограничивая ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ спор. НСкоторыС Π°ΠΌΡ‘Π±Ρ‹ ΠΏΠΎΠ³Π»ΠΎΡ‰Π°ΡŽΡ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ ΠΈ Π°Π±ΡΠΎΡ€Π±ΠΈΡ€ΡƒΡŽΡ‚ ΠΈΡ… токсины. Π’ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌ ΠΈΡ‚ΠΎΠ³Π΅ эти Π°ΠΌΡ‘Π±Ρ‹ ΠΏΠΎΠ³ΠΈΠ±Π°ΡŽΡ‚. Они гСнСтичСски схоТи с Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π°ΠΌΡ‘Π±Π°ΠΌΠΈ Π² Π»ΠΈΡ‡ΠΈΠ½ΠΊΠ΅ ΠΈ ΠΆΠ΅Ρ€Ρ‚Π²ΡƒΡŽΡ‚ собой для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π°ΠΌΡ‘Π± ΠΎΡ‚ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ, Ρ‡Ρ‚ΠΎ схоТС с самопоТСртвованиСм Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Вакая вроТдённая иммунная функция Ρƒ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π°ΠΌΡ‘Π± ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π΄Ρ€Π΅Π²Π½ΠΈΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ поглощСния ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠΎΠ³ Π±Ρ‹Ρ‚ΡŒ приспособлСн для Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ функция Π·Π°Π΄ΠΎΠ»Π³ΠΎ Π΄ΠΎ появлСния Ρ€Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Ρ… ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… [130] , Π½ΠΎ ΠΈΡ… ΠΎΠ±Ρ‰Π΅Π΅ происхоТдСниС с Ρ„Π°Π³ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π΅ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ. Π€Π°Π³ΠΎΡ†ΠΈΡ‚Ρ‹ ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π²ΠΎ всём ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠΌ царствС [4] , начиная ΠΎΡ‚ морских Π³ΡƒΠ±ΠΎΠΊ ΠΈ заканчивая насСкомыми ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹ΠΌΠΈ [131] [132] . Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π°ΠΌΡ‘Π± Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ своих ΠΈ Ρ‡ΡƒΠΆΠΈΡ… стала основой ΠΈΠΌΠΌΡƒΠ½Π½ΠΎΠΉ систСмы ΠΌΠ½ΠΎΠ³ΠΈΡ… Π²ΠΈΠ΄ΠΎΠ² [8] .

See also

  • Π˜ΠΌΠΌΡƒΠ½ΠΈΡ‚Π΅Ρ‚

Notes

  1. ↑ Little, C., Fowler HW, Coulson J. The Shorter Oxford English Dictionary. β€” Oxford University Press (Guild Publishing), 1983. β€” P. 1566–1567.
  2. ↑ 1 2 Thompson CB Apoptosis in the pathogenesis and treatment of disease. (Π°Π½Π³Π».) // Science (New York, NY). β€” 1995. β€” Vol. 267, no. 5203 . β€” P. 1456β€”1462. β€” PMID 7878464 .
  3. ↑ 1 2 3 4 5 6 7 8 9 10 Gene Mayer. Immunology β€” Chapter One: Innate (non-specific) Immunity (Π½Π΅ΠΎΠΏΡ€.) . Microbiology and Immunology On-Line Textbook . USC School of Medicine (2006). Π”Π°Ρ‚Π° обращСния 12 ноября 2008. Архивировано 23 августа 2011 Π³ΠΎΠ΄Π°.
  4. ↑ 1 2 Delves, Martin, Burton, Roit, 2006 , p. 250.
  5. ↑ Delves, Martin, Burton, Roit, 2006 , p. 251.
  6. ↑ Ilya Mechnikov (Π½Π΅ΠΎΠΏΡ€.) .
  7. ↑ 1 2 Schmalstieg FC Jr. , Goldman AS Ilya Ilich Metchnikoff (1845-1915) and Paul Ehrlich (1854-1915): the centennial of the 1908 Nobel Prize in Physiology or Medicine. (Π°Π½Π³Π».) // Journal of medical biography. - 2008. - Vol. 16, no. 2 . β€” P. 96β€”103. β€” DOI : 10.1258/jmb.2008.008006 . β€” PMID 18463079 .
  8. ↑ 1 2 Janeway C. A. Jr. Evolution of the innate immune system. (unspecified) .
  9. ↑ 1 2 Ernst, Stendahl, 2006 , p. 186.
  10. ↑ 1 2 Robinson, Babcock, 1998 , p. 187.
  11. ↑ Ernst, Stendahl, 2006 , p. 7β€”10.
  12. ↑ 1 2 Ernst, Stendahl, 2006 , p. 10.
  13. ↑ 1 2 3 Hoffbrand, Pettit, Moss, 2005 , p. 331.
  14. ↑ 1 2 3 Janeway C. A. Jr. Induced innate responses to infection (Π½Π΅ΠΎΠΏΡ€.) .
  15. ↑ 1 2 Fang FC Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. (Π°Π½Π³Π».) // Nature reviews. Microbiology. β€” 2004. β€” Vol. 2, no. 10 . β€” P. 820β€”832. β€” DOI : 10.1038/nrmicro1004 . β€” PMID 15378046 .
  16. ↑ 1 2 Janeway C. A. Jr. Antigen Presentation to T Lymphocytes (Π½Π΅ΠΎΠΏΡ€.) .
  17. ↑ Ambrose C. T. The Osler Slide, a Demonstration of Phagocytosis from 1876: Reports of Phagocytosis before Metchnikoff's 1880 Paper // Cellular Immunology. - 2006. - Vol. 240, no. 1. - P. 1-4. - ISSN 0008-8749 . - DOI : 10.1016 / j.cellimm.2006.05.008 .
  18. ↑ Fetal and Neonatal Physiology. 5th edition / Ed. by R. A. Polin, S. H. Abman, D. H. Rowitch, W. E. Benitz, W. W. Fox. - Philadelphia: Elsevier Health Sciences, 2016 .-- xxxvii + 2050 p. - ISBN 978-0-323-35214-7 . - P. 1221.
  19. ↑ Kaufmann S. H. E. Immunology's foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff // Nature Immunology. - 2008. - Vol. 9, no. 7. - P. 705-712. - ISSN 1529-2908 . - DOI : 10.1038 / ni0708-705 .
  20. ↑ Delves, Martin, Burton, Roit, 2006 , p. 3.
  21. ↑ Aterman K. Medals, memoirs - and Metchnikoff. (English) // Journal of leukocyte biology. - 1998. - Vol. 63, no. 4 . - P. 515-517. - PMID 9544583 .
  22. ↑ Ilya Mechnikov (neopr.) . The Nobel Foundation. Date of treatment November 28, 2008. Archived February 10, 2012.
  23. ↑ Delves, Martin, Burton, Roit, 2006 , p. 263.
  24. ↑ Robinson, Babcock, 1998 , p. vii.
  25. ↑ Ernst, Stendahl, 2006 , p. four.
  26. ↑ Ernst, Stendahl, 2006 , p. 78.
  27. ↑ 1 2 Hampton MB , Vissers MC , Winterbourn CC A single assay for measuring the rates of phagocytosis and bacterial killing by neutrophils. (English) // Journal of leukocyte biology. - 1994. - Vol. 55, no. 2 . - P. 147-152. - PMID 8301210 .
  28. ↑ Delves, Martin, Burton, Roit, 2006 , p. 6-7.
  29. ↑ Sompayrac, 2008 , p. 3.
  30. ↑ Sompayrac, 2008 , p. 13-16.
  31. ↑ Dale DC , Boxer L. , Liles WC The phagocytes: neutrophils and monocytes. (Eng.) // Blood. - 2008. - Vol. 112, no. 4 . - P. 935-945. - DOI : 10.1182 / blood-2007-12-077917 . - PMID 18684880 .
  32. ↑ Dahlgren C. , Karlsson A. Respiratory burst in human neutrophils. (English) // Journal of immunological methods. - 1999. - Vol. 232, no. 1-2 . - P. 3-14. - PMID 10618505 .
  33. ↑ Shatwell KP , Segal AW NADPH oxidase. (English) // The international journal of biochemistry & cell biology. - 1996. - Vol. 28, no. 11 . - P. 1191-1195. - PMID 9022278 .
  34. ↑ Klebanoff SJ Myeloperoxidase. (Eng.) // Proceedings of the Association of American Physicians. - 1999. - Vol. 111, no. 5 . - P. 383-389. - PMID 10519157 .
  35. ↑ Meyer KC Neutrophils, myeloperoxidase, and bronchiectasis in cystic fibrosis: green is not good. (English) // The Journal of laboratory and clinical medicine. - 2004. - Vol. 144, no. 3 . - P. 124-126. - PMID 15478278 .
  36. ↑ Hoffbrand, Pettit, Moss, 2005 , p. 118.
  37. ↑ Delves, Martin, Burton, Roit, 2006 , p. 6-10.
  38. ↑ Schroder K. , Hertzog PJ , Ravasi T. , Hume DA Interferon-gamma: an overview of signals, mechanisms and functions. (English) // Journal of leukocyte biology. - 2004. - Vol. 75, no. 2 . - P. 163-189. - DOI : 10.1189 / jlb.0603252 . - PMID 14525967 .
  39. ↑ Delves, Martin, Burton, Roit, 2006 , p. 188.
  40. ↑ 1 2 Sompayrac, 2008 , p. 17.
  41. ↑ Tipu HN , Ahmed TA , Ali S. , Ahmed D. , Waqar MA Chronic granulomatous disease. (English) // JPMA. The Journal of the Pakistan Medical Association. - 2008. - Vol. 58, no. 9 . - P. 516-518. - PMID 18846805 .
  42. ↑ Kaplan J. , De Domenico I. , Ward DM Chediak-Higashi syndrome. (English) // Current opinion in hematology. - 2008. - Vol. 15, no. 1 . - P. 22-29. - DOI : 10.1097 / MOH.0b013e3282f2bcce . - PMID 18043242 .
  43. ↑ Sompayrac, 2008 , p. 7.
  44. ↑ de Almeida SM , Nogueira MB , Raboni SM , Vidal LR Laboratorial diagnosis of lymphocytic meningitis. (English) // The Brazilian journal of infectious diseases: an official publication of the Brazilian Society of Infectious Diseases. - 2007. - Vol. 11, no. 5 . - P. 489-495. - PMID 17962876 .
  45. ↑ Sompayrac, 2008 , p. 22.
  46. ↑ Sompayrac, 2008 , p. 63.
  47. ↑ Apoptosis (neopr.) . Merriam-Webster Online Dictionary . Date of treatment March 19, 2009. Archived February 10, 2012.
  48. ↑ Li MO , Sarkisian MR , Mehal WZ , Rakic ​​P. , Flavell RA Phosphatidylserine receptor is required for clearance of apoptotic cells. (English) // Science (New York, NY). - 2003. - Vol. 302, no. 5650 . - P. 1560-1563. - DOI : 10.1126 / science.1087621 . - PMID 14645847 .
  49. ↑ Wang X. , Wu YC , Fadok VA , Lee MC , Gengyo-Ando K. , Cheng LC , Ledwich D. , Hsu PK , Chen JY , Chou BK , Henson P. , Mitani S. , Xue D. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. (English) // Science (New York, NY). - 2003. - Vol. 302, no. 5650 . - P. 1563-1566. - DOI : 10.1126 / science.1087641 . - PMID 14645848 .
  50. ↑ Savill J. , Gregory C. , Haslett C. Cell biology. Eat me or die. (English) // Science (New York, NY). - 2003. - Vol. 302, no. 5650 . - P. 1516-1517. - DOI : 10.1126 / science.1092533 . - PMID 14645835 .
  51. ↑ Zhou Z. , Yu X. Phagosome maturation during the removal of apoptotic cells: receptors lead the way. (English) // Trends in cell biology. - 2008. - Vol. 18, no. 10 . - P. 474-485. - DOI : 10.1016 / j.tcb.2008.08.08.002 . - PMID 18774293 .
  52. ↑ Sompayrac, 2008 , p. 44.
  53. ↑ Sompayrac, 2008 , p. four.
  54. ↑ Sompayrac, 2008 , p. 24-35.
  55. ↑ Delves, Martin, Burton, Roit, 2006 , pp. 171-184.
  56. ↑ Delves, Martin, Burton, Roit, 2006 , p. 456.
  57. ↑ Timothy Lee. Antigen Presenting Cells (APC) (neopr.) . Immunology for 1st Year Medical Students . Dalhousie University (2004). Date of treatment November 12, 2008. Archived January 12, 2008.
  58. ↑ Delves, Martin, Burton, Roit, 2006 , p. 161.
  59. ↑ Sompayrac, 2008 , p. 8.
  60. ↑ Delves, Martin, Burton, Roit, 2006 , p. 237-242.
  61. ↑ Lange C. , DΓΌrr M. , Doster H. , Melms A. , Bischof F. Dendritic cell-regulatory T-cell interactions control self-directed immunity. (English) // Immunology and cell biology. - 2007. - Vol. 85, no. 8 . - P. 575-581. - DOI : 10.1038 / sj.icb.7100088 . - PMID 17592494 .
  62. ↑ 1 2 Steinman, Ralph M. Dendritic Cells and Immune Tolerance (neopr.) . The Rockefeller University (2004). Date of treatment February 15, 2009. Archived February 10, 2012.
  63. ↑ Romagnani S. Immunological tolerance and autoimmunity. (English) // Internal and emergency medicine. - 2006. - Vol. 1, no. 3 . - P. 187-196. - PMID 17120464 .
  64. ↑ 1 2 Paoletti, Notario, Ricevuti, 1997 , p. 427.
  65. ↑ Sompayrac, 2008 , p. 16-17.
  66. ↑ Sompayrac, 2008 , p. 18-19.
  67. ↑ Delves, Martin, Burton, Roit, 2006 , p. 6.
  68. ↑ Zen K. , Parkos CA Leukocyte-epithelial interactions. (English) // Current opinion in cell biology. - 2003. - Vol. 15, no. 5 . - P. 557-564. - PMID 14519390 .
  69. ↑ Sompayrac, 2008 , p. 79.
  70. ↑ Hoffbrand, Pettit, Moss, 2005 , p. 117.
  71. ↑ Delves, Martin, Burton, Roit, 2006 , p. 1-6.
  72. ↑ Sompayrac, 2008 , p. 45.
  73. ↑ Takahashi K. , Naito M. , Takeya M. Development and heterogeneity of macrophages and their related cells through their differentiation pathways. (English) // Pathology international. - 1996. - Vol. 46, no. 7 . - P. 473-485. - PMID 8870002 .
  74. ↑ Krombach F. , MΓΌnzing S. , Allmeling AM , Gerlach JT , Behr J. , DΓΆrger M. Cell size of alveolar macrophages: an interspecies comparison. (Eng.) // Environmental health perspectives. - 1997. - Vol. 105 Suppl 5. - P. 1261-1263. - PMID 9400735 .
  75. ↑ 1 2 3 4 Bowers William. Immunology -Chapter Thirteen: Immunoregulation (neopr.) . Microbiology and Immunology On-Line Textbook . USC School of Medicine (2006). Date of treatment November 14, 2008. Archived August 23, 2011.
  76. ↑ Ernst, Stendahl, 2006 , p. 8.
  77. ↑ Delves, Martin, Burton, Roit, 2006 , p. 156.
  78. ↑ Delves, Martin, Burton, Roit, 2006 , p. 187.
  79. ↑ StvrtinovΓ‘ Viera, JΓ‘n JakubovskΓ½ and Ivan HulΓ­n. Neutrophils, central cells in acute inflammation // Inflammation and Fever from Pathophysiology: Principles of Disease . - Computing Center, Slovak Academy of Sciences: Academic Electronic Press, 1995. - ISBN 80-967366-1-2 . Archived December 31, 2010 on the Wayback Machine
  80. ↑ Delves, Martin, Burton, Roit, 2006 , p. four.
  81. ↑ 1 2 Sompayrac, 2008 , p. eighteen.
  82. ↑ Linderkamp O. , Ruef P. , Brenner B. , Gulbins E. , Lang F. Passive deformability of mature, immature, and active neutrophils in healthy and septicemic neonates. (English) // Pediatric research. - 1998. - Vol. 44, no. 6 . - P. 946-950. - DOI : 10.1203 / 00006450-199812000-00021 . - PMID 9853933 .
  83. ↑ Paoletti, Notario, Ricevuti, 1997 , p. 62.
  84. ↑ Soehnlein O. , Kenne E. , Rotzius P. , Eriksson EE , Lindbom L. Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages. (English) // Clinical and experimental immunology. - 2008. - Vol. 151, no. 1 . - P. 139-145. - DOI : 10.1111 / j.1365-2249.2007.03532.x . - PMID 17991288 .
  85. ↑ Soehnlein O. , Kai-Larsen Y. , Frithiof R. , Sorensen OE , Kenne E. , Scharffetter-Kochanek K. , Eriksson EE , Herwald H. , Agerberth B. , Lindbom L. Neutrophil primary granule proteins HBP and HNP1- 3 boost bacterial phagocytosis by human and murine macrophages. (English) // The Journal of clinical investigation. - 2008. - Vol. 118, no. 10 . - P. 3491-3502. - DOI : 10.1172 / JCI35740 . - PMID 18787642 .
  86. ↑ Steinman RM , Cohn ZA Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. (English) // The Journal of experimental medicine. - 1973. - Vol. 137, no. 5 . - P. 1142-1162. - PMID 4573839 .
  87. ↑ Steinman Ralph. Dendritic Cells (neopr.) . The Rockefeller University. Date of treatment November 14, 2008. Archived February 10, 2012.
  88. ↑ Guermonprez P. , Valladeau J. , Zitvogel L. , ThΓ©ry C. , Amigorena S. Antigen presentation and T cell stimulation by dendritic cells. (Eng.) // Annual review of immunology. - 2002. - Vol. 20. - P. 621-667. - DOI : 10.1146 / annurev.immunol.20.100301.064828 . - PMID 11861614 .
  89. ↑ Hoffbrand, Pettit, Moss, 2005 , p. 134.
  90. ↑ Sallusto F. , Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. (English) // Arthritis research. - 2002. - Vol. 4 Suppl 3. - P. 127-132. - DOI : 10.1186 / ar567 . - PMID 12110131 .
  91. ↑ Sompayrac, 2008 , pp. 42–46.
  92. ↑ Steinman Ralph. Dendritic Cells (neopr.) . The Rockefeller University. Date of treatment November 16, 2008. Archived February 10, 2012.
  93. ↑ Stelekati E. , Orinska Z. , Bulfone-Paus S. Mast cells in allergy: innate instructors of adaptive responses. (English) // Immunobiology. - 2007. - Vol. 212, no. 6 . - P. 505-519. - DOI : 10.1016 / j.imbio.2007.03.03.012 . - PMID 17544835 .
  94. ↑ 1 2 Malaviya R. , Abraham SN Mast cell modulation of immune responses to bacteria. (English) // Immunological reviews. - 2001. - Vol. 179. - P. 16-24. - PMID 11292019 .
  95. ↑ Connell I. , Agace W. , Klemm P. , Schembri M. , MΔƒrild S. , Svanborg C. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. (Eng.) // Proceedings of the National Academy of Sciences of the United States of America. - 1996. - Vol. 93, no. 18 . - P. 9827-9832. - PMID 8790416 .
  96. ↑ Malaviya R. , Twesten NJ , Ross EA , Abraham SN , Pfeifer JD Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. (English) // Journal of immunology (Baltimore, Md.: 1950). - 1996. - Vol. 156, no. 4 . - P. 1490-1496. - PMID 8568252 .
  97. ↑ Taylor ML , Metcalfe DD Mast cells in allergy and host defense. (English) // Allergy and asthma proceedings. - 2001. - Vol. 22, no. 3 . - P. 115-119. - PMID 11424870 .
  98. ↑ Birge RB , Ucker DS Innate apoptotic immunity: the calming touch of death. (English) // Cell death and differentiation. - 2008. - Vol. 15, no. 7 . - P. 1096-1102. - DOI : 10.1038 / cdd.2008.58 . - PMID 18451871 .
  99. ↑ Couzinet S. , Cejas E. , Schittny J. , Deplazes P. , Weber R. , Zimmerli S. Phagocytic uptake of Encephalitozoon cuniculi by nonprofessional phagocytes. (English) // Infection and immunity. - 2000. - Vol. 68, no. 12 . - P. 6939-6945. - PMID 11083817 .
  100. ↑ Segal G. , Lee W. , Arora PD , McKee M. , Downey G. , McCulloch CA Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts. (English) // Journal of cell science. - 2001. - Vol. 114, no. Pt 1 . - P. 119-129. - PMID 11112696 .
  101. ↑ Rabinovitch M. Professional and non-professional phagocytes: an introduction. (English) // Trends in cell biology. - 1995. - Vol. 5, no. 3 . - P. 85-87. - PMID 14732160 .
  102. ↑ 1 2 3 4 5 Todar Kenneth. Mechanisms of Bacterial Pathogenicity: Bacterial Defense Against Phagocytes (neopr.) . 2008. Date of treatment December 10, 2008. Archived February 10, 2012.
  103. ↑ Alexander J. , Satoskar AR , Russell DG Leishmania species: models of intracellular parasitism. (English) // Journal of cell science. - 1999. - Vol. 112 Pt 18. - P. 2993-3002. - PMID 10462516 .
  104. ↑ Celli J. , Finlay BB Bacterial avoidance of phagocytosis. (English) // Trends in microbiology. - 2002. - Vol. 10, no. 5 . - P. 232-237. - PMID 11973157 .
  105. ↑ Valenick LV , Hsia HC , Schwarzbauer JE Fibronectin fragmentation promotes alpha4beta1 integrin-mediated contraction of a fibrin-fibronectin provisional matrix. (English) // Experimental cell research. - 2005. - Vol. 309, no. 1 . - P. 48–55. - DOI : 10.1016 / j.yexcr.2005.05.0.024 . - PMID 15992798 .
  106. ↑ Burns SM , Hull SI Loss of resistance to ingestion and phagocytic killing by O (-) and K (-) mutants of a uropathogenic Escherichia coli O75: K5 strain. (English) // Infection and immunity. - 1999. - Vol. 67, no. 8 . - P. 3757-3762. - PMID 10417134 .
  107. ↑ Vuong C. , Kocianova S. , Voyich JM , Yao Y. , Fischer ER , DeLeo FR , Otto M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. (English) // The Journal of biological chemistry. - 2004. - Vol. 279, no. 52 . - P. 54881-54886. - DOI : 10.1074 / jbc.M411374200 . - PMID 15501828 .
  108. ↑ Melin M. , Jarva H. , Siira L. , Meri S. , KΓ€yhty H. , VΓ€kevΓ€inen M. Streptococcus pneumoniae capsular serotype 19F is more resistant to C3 deposition and less sensitive to opsonophagocytosis than serotype 6B. (English) // Infection and immunity. - 2009. - Vol. 77, no. 2 . - P. 676-684. - DOI : 10.1128 / IAI.01186-08 . - PMID 19047408 .
  109. ↑ 1 2 Foster TJ Immune evasion by staphylococci. (Eng.) // Nature reviews. Microbiology. - 2005. - Vol. 3, no. 12 . - P. 948-958. - DOI : 10.1038 / nrmicro1289 . - PMID 16322743 .
  110. ↑ Sansonetti P. Phagocytosis of bacterial pathogens: implications in the host response. (English) // Seminars in immunology. - 2001. - Vol. 13, no. 6 . - P. 381-390. - DOI : 10.1006 / smim.2001.0335 . - PMID 11708894 .
  111. ↑ Dersch P. , Isberg RR A region of the Yersinia pseudotuberculosis invasin protein enhances integrin-mediated uptake into mammalian cells and promotes self-association. (Eng.) // The EMBO journal. - 1999. - Vol. 18, no. 5 . - P. 1199-1213. - DOI : 10.1093 / emboj / 18.5.1199 . - PMID 10064587 .
  112. ↑ Antoine JC , Prina E. , Lang T. , Courret N. The biogenesis and properties of the parasitophorous vacuoles that harbor Leishmania in murine macrophages. (English) // Trends in microbiology. - 1998. - Vol. 6, no. 10 . - P. 392-401. - PMID 9807783 .
  113. ↑ Masek Katherine S., Christopher A. Hunter. Eurekah Bioscience Collection: Evasion of Phagosome Lysosome Fusion and Establishment of a Replicative Organelle by the Intracellular Pathogen Legionella pneumophila . - Landes Bioscience, 2007.
  114. ↑ Das D. , Saha SS , Bishayi B. Intracellular survival of Staphylococcus aureus: correlating production of catalase and superoxide dismutase with levels of inflammatory cytokines. (Eng.) // Inflammation research: official journal of the European Histamine Research Society ... [et al.]. - 2008. - Vol. 57, no. 7 . - P. 340β€”349. - DOI : 10.1007 / s00011-007-7206-z . - PMID 18607538 .
  115. ↑ Hara H. , Kawamura I. , Nomura T. , Tominaga T. , Tsuchiya K. , Mitsuyama M. Cytolysin-dependent escape of the bacterium from the phagosome is required but not sufficient for induction of the Th1 immune response against Listeria monocytogenes infection : distinct role of Listeriolysin O determined by cytolysin gene replacement. (English) // Infection and immunity. - 2007. - Vol. 75, no. 8 . - P. 3791-3801. - DOI : 10.1128 / IAI.01779-06 . - PMID 17517863 .
  116. ↑ Datta V. , Myskowski SM , Kwinn LA , Chiem DN , Varki N. , Kansal RG , Kotb M. , Nizet V. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. (English) // Molecular microbiology. - 2005. - Vol. 56, no. 3 . - P. 681-695. - DOI : 10.1111 / j.1365-2958.2005.04583.x . - PMID 15819624 .
  117. ↑ Iwatsuki K. , Yamasaki O. , Morizane S. , Oono T. Staphylococcal cutaneous infections: invasion, evasion and aggression. (English) // Journal of dermatological science. - 2006. - Vol. 42, no. 3 . - P. 203-214. - DOI : 10.1016 / j.jdermsci.2006.03.011 . - PMID 16679003 .
  118. ↑ Denkers EY , Butcher BA Sabotage and exploitation in macrophages parasitized by intracellular protozoans. (English) // Trends in parasitology. - 2005. - Vol. 21, no. 1 . - P. 35-41. - DOI : 10.1016 / j.pt.2004.10.004 . - PMID 15639739 .
  119. ↑ Gregory DJ , Olivier M. Subversion of host cell signaling by the protozoan parasite Leishmania. (English) // Parasitology. - 2005. - Vol. 130 Suppl. - P. 27-35. - DOI : 10.1017 / S0031182005008139 . - PMID 16281989 .
  120. ↑ Paoletti, Notario, Ricevuti, 1997 , p. 426-430.
  121. ↑ Heinzelmann M. , Mercer-Jones MA , Passmore JC Neutrophils and renal failure. (English) // American journal of kidney diseases: the official journal of the National Kidney Foundation. - 1999. - Vol. 34, no. 2 . - P. 384-399. - DOI : 10.1053 / AJKD03400384 . - PMID 10430993 .
  122. ↑ Lee WL , Downey GP Neutrophil activation and acute lung injury. (English) // Current opinion in critical care. - 2001. - Vol. 7, no. 1 . - P. 1-7. - PMID 11373504 .
  123. ↑ 1 2 Moraes TJ , Zurawska JH , Downey GP Neutrophil granule contents in the pathogenesis of lung injury. (English) // Current opinion in hematology. - 2006. - Vol. 13, no. 1 . - P. 21-27. - PMID 16319683 .
  124. ↑ Abraham E. Neutrophils and acute lung injury. (English) // Critical care medicine. - 2003. - Vol. 31, no. 4 Suppl . - P. 195-199. - DOI : 10.1097 / 01.CCM.0000057843.47705.E8 . - PMID 12682440 .
  125. ↑ Ricevuti G. Host tissue damage by phagocytes. (Eng.) // Annals of the New York Academy of Sciences. - 1997. - Vol. 832. - P. 426-448. - PMID 9704069 .
  126. ↑ Charley B. , Riffault S. , Van Reeth K. Porcine innate and adaptive immune responses to influenza and coronavirus infections. (Eng.) // Annals of the New York Academy of Sciences. - 2006. - Vol. 1081. - P. 130-136. - DOI : 10.1196 / annals.1373.014 . - PMID 17135502 .
  127. ↑ Sompayrac, 2008 , p. one.
  128. ↑ 1 2 Cosson P. , Soldati T. Eat, kill or die: when amoeba meets bacteria. (English) // Current opinion in microbiology. - 2008. - Vol. 11, no. 3 . - P. 271-276. - DOI : 10.1016 / j.mib.2008.05.05.005 . - PMID 18550419 .
  129. ↑ Bozzaro S. , Bucci C. , Steinert M. Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. (English) // International review of cell and molecular biology. - 2008. - Vol. 271. - P. 253-300. - DOI : 10.1016 / S1937-6448 (08) 01206-9 . - PMID 19081545 .
  130. ↑ Chen G. , Zhuchenko O. , Kuspa A. Immune-like phagocyte activity in the social amoeba. (English) // Science (New York, NY). - 2007. - Vol. 317, no. 5838 . - P. 678-681. - DOI : 10.1126 / science.1143991 . - PMID 17673666 .
  131. ↑ Delves, Martin, Burton, Roit, 2006 , pp. 251-252.
  132. ↑ Hanington PC , Tam J. , Katzenback BA , Hitchen SJ , Barreda DR , Belosevic M. Development of macrophages of cyprinid fish. (English) // Developmental and comparative immunology. - 2009. - Vol. 33, no. 4 . - P. 411-429. - DOI : 10.1016 / j.dci.2008.11.004 . - PMID 19063916 .

Literature

  • Delves PJ, Martin SJ, Burton DR, Roit IM Roitt's Essential Immunology. - 11th edition. - Malden, MA: Blackwell Publishing, 2006 .-- ISBN 1405136030 .
  • Phagocytosis of Bacteria and Bacterial Pathogenicity / Ernst JD, Stendahl O. - N. Y .: Cambridge University Press, 2006 .-- ISBN 0521845696 .
  • Hoffbrand AV, Pettit JE, Moss PAH Essential Haematology. - 4th edition. - L .: Blackwell Science, 2005 .-- ISBN 0632051531 .
  • Janeway CA, Murphy KM, Travers P., Walport M. Immunobiology. - 5th edition. - N. Y .: Garland Science, 2001 .-- ISBN 081533642X .
  • Phagocytes: Biology, Physiology, Pathology, and Pharmacotherapeutics / Paoletti R., Notario A., Ricevuti G. - N. Y .: The New York Academy of Sciences, 1997. - ISBN 1573311022 .
  • Phagocyte Function - A guide for research and clinical evaluation / Robinson JP, Babcock GF - N. Y .: Wiley – Liss, 1998 .-- ISBN 0471123641 .
  • Sompayrac L. How the Immune System Works. - 3rd edition. - Malden, MA: Blackwell Publishing, 2008 .-- ISBN 9781405162210 .
Source - https://ru.wikipedia.org/w/index.php?title= Phagocytes &oldid = 100605049


More articles:

  • Tui David
  • Osipovich, Albina
  • Zateria
  • Evernesses Eric
  • Boyce Normal Form - Codd
  • Bingham, George Charles, 3rd Earl of Lucan
  • Swimming at the 1904 Summer Olympics - 880 yards freestyle
  • Swimming at the 1904 Summer Olympics - 1 mile freestyle
  • Salomas
  • Yekelchik, Yuri Izrailevich

All articles

Clever Geek | 2019