Clever Geek Handbook
📜 ⬆️ ⬇️

Ehrenfest Theorem

The Ehrenfest Theorem ( Ehrenfest Equations ) is a statement on the form of equations of quantum mechanics for the average values ​​of the observed quantities of Hamiltonian systems . These equations were first obtained by Paul Ehrenfest in 1927 .

The statement of the theorem [1] :

In quantum mechanics, the average values ​​of the coordinates and momenta of a particle, as well as the force acting on it, are interconnected by equations similar to the corresponding equations of classical mechanics , that is, when a particle moves, the average values ​​of these quantities in quantum mechanics change as the values ​​of these quantities change classical mechanics.

A complete analogy takes place only if a number of requirements [2] [3] are met.

The Ehrenfest equation for the average value of the quantum observable Hamiltonian system has the form

ddt⟨A⟩=oneiℏ⟨[A,H]⟩+⟨∂A∂t⟩,{\ displaystyle {\ frac {d} {dt}} \ langle A \ rangle = {\ frac {1} {i \ hbar}} \ langle [A, H] \ rangle + \ left \ langle {\ frac {\ partial A} {\ partial t}} \ right \ rangle,} {\ frac {d} {dt}} \ langle A \ rangle = {\ frac {1} {i \ hbar}} \ langle [A, H] \ rangle + \ left \ langle {\ frac {\ partial A} {\ partial t}} \ right \ rangle,

WhereA {\ displaystyle \ A} \ A - quantum observable,H {\ displaystyle \ H} \ H - the Hamilton operator of the system, angle brackets indicate the taking of the average value, and square brackets indicate the commutator . This equation can be derived from the Heisenberg equation .

In the particular case, the mean values ​​of the coordinateq {\ displaystyle \ q} \ q and momentump {\ displaystyle \ p} \ p particles are described by equations

ddt⟨q⟩=onem⟨p⟩,{\ displaystyle {\ frac {d} {dt}} \ langle q \ rangle = {\ frac {1} {m}} \ langle p \ rangle,} {\ frac {d} {dt}} \ langle q \ rangle = {\ frac {1} {m}} \ langle p \ rangle,
ddt⟨p⟩=-⟨∂U∂q⟩,{\ displaystyle {\ frac {d} {dt}} \ langle p \ rangle = - \ left \ langle {\ frac {\ partial U} {\ partial q}} \ right \ rangle,} {\ frac {d} {dt}} \ langle p \ rangle = - \ left \ langle {\ frac {\ partial U} {\ partial q}} \ right \ rangle,

Wherem {\ displaystyle \ m} \ m Is the mass of the particle,U(q) {\ displaystyle \ U (q)} \ U (q) Is the operator of the potential energy of the particle.

The Ehrenfest equations for mean coordinates and momenta are quantum analogues of the system of canonical Hamilton equations and define a quantum generalization of Newton’s second law .

Notes

  1. ↑ Matveev A.N. Atomic Physics, - M .: Higher School, 1989. p. 125.
  2. ↑ Ehrenfest theorems // Physical Encyclopedia : [in 5 vol.] / Ch. ed. A.M. Prokhorov . - M .: Great Russian Encyclopedia, 1999. - T. 5: Stroboscopic devices - Brightness. - S. 636-637. - 692 p. - 20,000 copies. - ISBN 5-85270-101-7 .
  3. ↑ Blokhintsev D.I. Fundamentals of quantum mechanics. 8th ed. - M .: URSS, 2014 .-- 664 s (paragraph 34, p. 136-138)

Literature

  • Ehrenfest P. Relativity. Quanta. Statistics. Collection of articles , - M .: Nauka, 1972. (Article "Comment on the approximate justice of classical mechanics in the framework of quantum mechanics" p. 82-84)
  • Blokhintsev D.I. Fundamentals of quantum mechanics. 5th ed. - M .: Nauka, 1976. - 664 s (paragraph 32, p. 130-133)
  • Matveev A.N. Atomic Physics, - M .: Higher School, 1989. - 439 p. (Pp. 124-126)
  • Messiah A. Quantum Mechanics. In 2 volumes / Ed. L.D. Fadeeva. Translation from French V.T. Khozyainova .. - M .: Nauka, 1978. - T. 1. - S. 307. (VI.2. P. 214-216)
  • Borisov A.V. Fundamentals of quantum mechanics , - Faculty of Physics, Moscow State University, 1998 ( Ehrenfest Theorems )
Source - https://ru.wikipedia.org/w/index.php?title=Erenfest theorem&oldid = 91207039


More articles:

  • Heisenberg equation
  • Pamir-Alai
  • Birds of Paradise (film)
  • Ise Temple
  • Lucky (Vinitsa municipality)
  • European Girls Volleyball Championship
  • Vernadsky, Vladimir Ivanovich
  • Zavolzhsky district (Yaroslavl)
  • KOSAFA Cup
  • Rhythmic Gymnastics World Championship 1992

All articles

Clever Geek | 2019