Clever Geek Handbook
📜 ⬆️ ⬇️

Display variation

A variation of a mapping is a numerical characteristic of a mapping associated with its differential properties.

The concept of “display variation” was defined by S. Banach [1] .

Two-dimensional case

Consider the definition of map variation for the two-dimensional case.

Let a mapping be given

α:x=f(u,v),y=φ(u,v),{\ displaystyle \ alpha \ colon x = f (u, \; v), \; y = \ varphi (u, \; v),}  

Wheref(u,v) {\ displaystyle f (u, \; v)}   andφ(u,v) {\ displaystyle \ varphi (u, \; v)}   - continuous squaredD0=[0,one]×[0,one] {\ displaystyle D_ {0} = [0, \; 1] \ times [0, \; 1]}   functions. They say that mappingα {\ displaystyle \ alpha}   has limited variation if there is a numberM>0 {\ displaystyle M> 0}   such that for any sequence of non-overlapping squaresDi⊂D0(i=one,2,...) {\ displaystyle D ^ {i} \ subset D_ {0} \; (i = 1, \; 2, \; \ ldots)}   with sides parallel to the coordinate axesu,v {\ displaystyle u, \; v}   , the inequality holds

∑imesDxyi⩽M,{\ displaystyle \ sum _ {i} \ mathrm {mes} \, D_ {xy} ^ {i} \ leqslant M,}  

WhereDxy {\ displaystyle D_ {xy}}   - image of the setDi⊂D0 {\ displaystyle D ^ {i} \ subset D_ {0}}   when displayingα {\ displaystyle \ alpha}   ,

mesD{\ displaystyle \ mathrm {mes} \, D}   Is a flat Lebesgue measure of the setD {\ displaystyle D}   .

Numerical value of display variationV(α) {\ displaystyle V (\ alpha)}   can be defined in various ways. For example, if the mappingα {\ displaystyle \ alpha}   has a limited variation, then its variationV(α) {\ displaystyle V (\ alpha)}   can be determined by the formula:

V(α)=∬-∞+∞N(s,t)dsdt,{\ displaystyle V (\ alpha) = \ iint \ limits _ {- \ infty} ^ {\ quad + \ infty} N (s, \; t) \, ds \, dt,}  

WhereN(s,t) {\ displaystyle N (s, \; t)}   - number of system solutionsf(u,v)=s,φ(u,v)=t {\ displaystyle f (u, \; v) = s, \; \ varphi (u, \; v) = t}   , or the so-called Banach indicatrix displayα {\ displaystyle \ alpha}   .

It was shown [2] that if the mapα {\ displaystyle \ alpha}   has a limited variation, then almost everywhere onD0 {\ displaystyle D_ {0}}   there is a generalized JacobianJ(P) {\ displaystyle J (P)}   whereP⊂D0 {\ displaystyle P \ subset D_ {0}}   which we integrate onD0 {\ displaystyle D_ {0}}   . Wherein

J(P)=deflimmesK→0mesKxymesK,{\ displaystyle J (P) \, {\ stackrel {\ mathrm {def}} {=}} \ lim _ {\ mathrm {mes} \, K \ to 0} {\ frac {\ mathrm {mes} \, K_ {xy}} {\ mathrm {mes} \, K}},}  

WhereK⊂D0 {\ displaystyle K \ subset D_ {0}}   - a square containing a pointP⊂D0 {\ displaystyle P \ subset D_ {0}}   whose sides are parallel to the axesu,v {\ displaystyle u, \; v}   ;

Kxy{\ displaystyle K_ {xy}}   - image of the setK {\ displaystyle K}   ;

mesK{\ displaystyle \ mathrm {mes} \, K}   Is a flat Lebesgue measure of the setK {\ displaystyle K}   .

Literature

  • Lavrentiev, M.A., Shabat, B.V. Methods of the theory of functions of a complex variable. - M .: Nauka, 1987 .-- 688 p.
  • Griffiths, F. External differential systems and the calculus of variations. - M .: Mir, 1986 .-- 360 p.
  • Kolmogorov, A.N., Fomin, S.V. Elements of the theory of functions and functional analysis. - 7th ed. - M .: FIZMATLIT, 2004 .-- 572 p. - ISBN 5-9221-0266-4 . .

Notes

  1. ↑ Banach S. Fundamenta Mathematicae. - 1925. - t. 7. - p. 225-236.
  2. ↑ Kudryavtsev L. D. Metric questions in the theory of functions and mappings. - at. 1. - K., 1969. - p. 34-108
Source - https://ru.wikipedia.org/w/index.php?title=Variance_images&oldid=71803228


More articles:

  • Russian national football team
  • Barak, Ehud
  • Volendam
  • Braunschweig Corvettes
  • Messinger, Ruth
  • Operation Wunderland
  • Borman, Martin
  • Small Catechism
  • Abra
  • Chikamatsu Mondzaemon

All articles

Clever Geek | 2019