Clever Geek Handbook
📜 ⬆️ ⬇️

Sign of Lobachevsky

The Lobachevsky sign is a sign of the convergence of the number series proposed by Lobachevsky between 1834 and 1836.

Let be(an) {\ displaystyle (a_ {n})} (a_ {n}) there is a decreasing sequence of positive numbers, then the series

∑n=one∞an{\ displaystyle \ sum _ {n = 1} ^ {\ infty} a_ {n}} \ sum _ {{n = 1}} ^ {\ infty} a_ {n}

converges or diverges simultaneously with a number

∑m=one∞Nm2m{\ displaystyle \ sum _ {m = 1} ^ {\ infty} {\ frac {N_ {m}} {2 ^ {m}}}} \ sum _ {{m = 1}} ^ {\ infty} {\ frac {N_ {m}} {2 ^ {m}}}

WhereNm {\ displaystyle N_ {m}} N_ {m} Is the smallest integer such thataNm≤one2m {\ displaystyle a_ {N_ {m}} \ leq {\ frac {1} {2 ^ {m}}}} a _ {{N_ {m}}} \ leq {\ frac 1 {2 ^ {m}}} .

Examples

  • For a harmonic seriesan=onen {\ displaystyle a_ {n} = {\ tfrac {1} {n}}}   we haveNm=2m {\ displaystyle N_ {m} = 2 ^ {m}}   , in this wayNm2m=one {\ displaystyle {\ frac {N_ {m}} {2 ^ {m}}} = 1}   and then the second row diverges. According to the sign of Lobachevsky, the first also diverges.

Literature

  • Lobachevsky sign - an article from the Mathematical Encyclopedia
Source - https://ru.wikipedia.org/w/index.php?title=Lobachevsky’s Sign&oldid = 71537281


More articles:

  • Polovtsova, Nadezhda Mikhailovna
  • 70's Robot Anime Geppy-X
  • Zhuravlev, Yuri Ivanovich (mathematician)
  • Subh
  • World Series of Poker Europe
  • Black-necked Grebe
  • Teike Karl
  • Kuznetsova, Lyalya Mendybaevna
  • Smerenburg
  • Function Tab

All articles

Clever Geek | 2019