Clever Geek Handbook
📜 ⬆️ ⬇️

ATC theorem

ATS theorem - a theorem on the approximation of a shorter trigonometric sum.

In some areas of mathematics and mathematical physics, sums of the form

S=∑a<k≤bφ(k)e2πif(k)(one).{\ displaystyle S = \ sum _ {a <k \ leq b} \ varphi (k) e ^ {2 \ pi if (k)} ~~~ (1).} S = \ sum_ {a <k \ le b} \ varphi (k) e ^ {2 \ pi i f (k)} ~~~ (1).

Hereφ(x) {\ displaystyle \ varphi (x)} \ varphi (x) andf(x) {\ displaystyle f (x)} f (x) - real functions of the real argument,i2=-one. {\ displaystyle i ^ {2} = - 1.} i ^ 2 = -1.

Such sums appear, for example, in number theory in the analysis of the Riemann zeta function , in solving problems related to the distribution of integer points in various regions on the plane and in space, in studying Fourier series , in solving differential equations such as the wave equation , the heat equation etc.

Introductory remarks

We call the length of the sumS {\ displaystyle S} S numberb-a {\ displaystyle ba} b-a (for wholea {\ displaystyle a} a andb {\ displaystyle b} b it's just the number of terms inS {\ displaystyle S} S )

We will use the following notation:

  • AtB>0,B→+∞ {\ displaystyle B> 0, B \ to + \ infty} B > 0, B \to +\infty orB→0 {\ displaystyle B \ to 0} B \to 0 recordone≪AB≪one {\ displaystyle 1 \ ll {\ frac {A} {B}} \ ll 1} 1 \ll \frac{A}{B} \ll 1 means there are constantsCone>0 {\ displaystyle C_ {1}> 0} C_1 > 0 andC2>0, {\ displaystyle C_ {2}> 0,} C_2 > 0, such that
    Cone≤|A|B≤C2{\ displaystyle C_ {1} \ leq {\ frac {| A |} {B}} \ leq C_ {2}} C_1 \leq\frac{|A|}{B} \leq C_2 .
  • For materialα {\ displaystyle \ alpha} \alpha record||α|| {\ displaystyle || \ alpha ||} ||\alpha|| means what
    ||α||=min({α},one-{α}){\ displaystyle || \ alpha || = \ min (\ {\ alpha \}, 1 - \ {\ alpha \})} ||\alpha|| = \min(\{\alpha\},1- \{\alpha\}) ,
    Where{α} {\ displaystyle \ {\ alpha \}} \{\alpha\} - fractionα. {\ displaystyle \ alpha.} \alpha.

We formulate the main theorem on replacing the trigonometric (sometimes also called exponential) sum by a shorter one.

ATS Theorem

Let real functionsf(x) {\ displaystyle f (x)}   andφ(x) {\ displaystyle \ varphi (x)}   satisfy on the segment[a,b] {\ displaystyle [a, b]}   the following conditions:

  1. f″(x){\ displaystyle f '' (x)}   andφ″(x) {\ displaystyle \ varphi '' (x)}   are continuous;
  2. there are numbersH {\ displaystyle H}   ,U {\ displaystyle U}   andV {\ displaystyle V}   such that
    H>0,one≪U≪V,0<b-a≤V{\ displaystyle H> 0, ~~ 1 \ ll U \ ll V, ~~ 0 <ba \ leq V}  
    oneU≪f″(x)≪oneU,φ(x)≪H,f‴(x)≪oneUV,φ′(x)≪HV,f⁗(x)≪oneUV2,φ″(x)≪HV2.{\ displaystyle {\ begin {array} {rc} {\ frac {1} {U}} \ ll f '' (x) \ ll {\ frac {1} {U}} \, & \ varphi (x) \ ll H, \\ f '' '(x) \ ll {\ frac {1} {UV}} \, & \ varphi' (x) \ ll {\ frac {H} {V}}, \\ f '' '' (x) \ ll {\ frac {1} {UV ^ {2}}} \, & \ varphi '' (x) \ ll {\ frac {H} {V ^ {2}}}. \\\ end {array}}}  

Then, determining the numbersxμ {\ displaystyle x _ {\ mu}}   from the equation

f′(xμ)=μ,{\ displaystyle f '(x _ {\ mu}) = \ mu,}  

we have

∑a<μ≤bφ(μ)e2πif(μ)=∑f′(a)≤μ≤f′(b)C(μ)Z(μ)+R,{\ displaystyle \ sum _ {a <\ mu \ leq b} \ varphi (\ mu) e ^ {2 \ pi if (\ mu)} = \ sum _ {f '(a) \ leq \ mu \ leq f '(b)} C (\ mu) Z (\ mu) + R,}  

Where

R=O(HUb-a+HTa+HTb+Hlog⁡(f′(b)-f′(a)+2));{\ displaystyle R = O \ left ({\ frac {HU} {ba}} + HT_ {a} + HT_ {b} + H \ log \ left (f '(b) -f' (a) +2 \ right) \ right);}  
Tj={0,iff′(j)isaninteger;min(one||f′(j)||,U),if||f′(j)||≠0;{\ displaystyle T_ {j} = \ left \ {{\ begin {array} {rc} 0 \, & \ {{\ textit {i}} f} \ \ f '(j) \ {{\ textit {i }} s \ an \ integer}; \\\ min \ left ({\ frac {1} {|| f '(j) ||}}, {\ sqrt {U}} \ right) \, & \ { {\ textit {i}} f} \ \ || f '(j) || \ neq 0; \\\ end {array}} \ right.}  
j=a,b;{\ displaystyle j = a, b;}  
C(μ)={one,iff′(a)<μ<f′(b);one2,ifμ=f′(a)orμ=f′(b);{\ displaystyle C (\ mu) = \ left \ {{\ begin {array} {rc} 1 \ \, & \ \ {{\ textit {i}} f} \ \ f '(a) <\ mu < f '(b); \\ {\ frac {1} {2}} \ \, & \ \ {{\ textit {i}} f} \ \ \ mu = f' (a) \ \ {{\ textit {o}} r} \ \ \ mu = f '(b); \\\ end {array}} \ right.}  
Z(μ)=one+i2φ(xμ)f″(xμ)e2πi(f(xμ)-μxμ).{\ displaystyle Z (\ mu) = {\ frac {1 + i} {\ sqrt {2}}} {\ frac {\ varphi (x _ {\ mu})} {\ sqrt {f '' (x _ {\ mu})}}} e ^ {2 \ pi i (f (x _ {\ mu}) - \ mu x _ {\ mu})} \.}  

Van der Corpute Lemma

The simplest version of the formulated theorem is a statement called the van der Corpute lemma in the literature.

Let bef(x) {\ displaystyle f (x)}   Is a real differentiable function on the intervala<x≤b {\ displaystyle a <x \ leq b}   , in addition, within this interval its derivativef′(x) {\ displaystyle f '(x)}   is a monotonous and constant function, and whenδ=const {\ displaystyle \ delta = const}   ,0<δ<one {\ displaystyle 0 <\ delta <1}   satisfies the inequality

|f′(x)|≤δ.{\ displaystyle | f '(x) | \ leq \ delta.}  

Then

∑a<k≤be2πif(k)=∫abe2πif(x)dx+θ(3+2δone-δ),{\ displaystyle \ sum _ {a <k \ leq b} e ^ {2 \ pi if (k)} = \ int _ {a} ^ {b} e ^ {2 \ pi if (x)} dx + \ theta \ left (3 + {\ frac {2 \ delta} {1- \ delta}} \ right),}  

Where|θ|≤one. {\ displaystyle | \ theta | \ leq 1.}  

If the parametersa {\ displaystyle a}   andb {\ displaystyle b}   are integers, then the last expression can be replaced by this:

∑a<k≤be2πif(k)=∫abe2πif(x)dx+one2e2πif(b)-one2e2πif(a)+θ2δone-δ,{\ displaystyle \ sum _ {a <k \ leq b} e ^ {2 \ pi if (k)} = \ int _ {a} ^ {b} e ^ {2 \ pi if (x)} dx + {\ frac {1} {2}} e ^ {2 \ pi if (b)} - {\ frac {1} {2}} e ^ {2 \ pi if (a)} + \ theta {\ frac {2 \ delta} {1- \ delta}},}  

Where|θ|≤one {\ displaystyle | \ theta | \ leq 1}   .

Application

For applications of automatic telephone exchanges in physics, see [1] , [2] , see also [3] , [4] .

History

The problem of approximating a trigonometric series by any suitable function was already considered by Euler and Poisson .

Under certain conditions onφ(x) {\ displaystyle \ varphi (x)}   andf(x) {\ displaystyle f (x)}   the amountS {\ displaystyle S}   can be replaced with good accuracy by another sumSone, {\ displaystyle S_ {1},}  

Sone=∑α<k≤βΦ(k)e2πiF(k),{\ displaystyle S_ {1} = \ sum _ {\ alpha <k \ leq \ beta} \ Phi (k) e ^ {2 \ pi iF (k)},}  

whose lengthβ-α {\ displaystyle \ beta - \ alpha}   much less thanb-a. {\ displaystyle ba.}   The first relations of the form

S=Sone+R{\ displaystyle S = S_ {1} + R}  

WhereR {\ displaystyle R}   - residual member, with specific functionsφ(x) {\ displaystyle \ varphi (x)}   andf(x), {\ displaystyle f (x),}   were obtained by G. Hardy and J. Littlewood [5] , [6] , [7] when deriving the functional equation for the Riemann zeta functionζ(s) {\ displaystyle \ zeta (s)}   and I. Vinogradov [8] , when considering the number of integer points in areas on the plane. In general, the theorem was proved by J. Van der Corpute [9] , [10] (recent results related to the Van der Corpute theorem can be found in [11] ).

In each of the above work on the functionφ(x) {\ displaystyle \ varphi (x)}   andf(x) {\ displaystyle f (x)}   some restrictions were imposed. With restrictions convenient for applications, the theorem was proved by A. A. Karatsuba in [12] (see also [13] , [14] ).

Notes

  1. ↑ EA Karatsuba Approximation of sums of oscillating summands in certain physical problems, - JMP 45:11 , pp. 4310-4321 (2004).
  2. ↑ EA Karatsuba On an approach to the study of the Jaynes-Cummings sum in quantum optics, - Numerical Algorithms, Vol. 45, No.1-4, pp. 127-137 (2007).
  3. ↑ E. Chassande-Mottin, A. Pai Best chirplet chain: near-optimal detection of gravitational wave chirps, - Phys. Rev. D 73: 4 , 042003, pp. 1-23 (2006).
  4. ↑ M. Fleischhauer, WP Schleich Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes-Cummings model, - Phys. Rev. A 47: 3 , pp. 4258-4269 (1993).
  5. ↑ GH Hardy and JE Littlewood The trigonometrical series associated with the elliptic θ-functions, - Acta Math. 37 , pp. 193–239 (1914).
  6. ↑ GH Hardy and JE Littlewood Contributions to the theory of Riemann Zeta-Function and the theory of the distribution of primes, - Acta Math. 41 , pp. 119-196 (1918).
  7. ↑ GH Hardy and JE Littlewood The zeros of Riemann's zeta-function on the critical line, - Math. Z., 10 , pp. 283-317 (1921).
  8. ↑ I. M. Vinogradov On the average value of the number of classes of purely root forms of the negative determinant, - Communication. Kharkiv. Mat. Islands, vol. 16, No. 1/2, pp. 10–38 (1918).
  9. ↑ JG Van der Corput Zahlentheoretische Abschätzungen, - Math. Ann. 84 , pp. 53-79 (1921).
  10. ↑ JG Van der Corput Verschärfung der abschätzung beim teilerproblem, - Math. Ann., 87 , pp. 39-65 (1922).
  11. ↑ HL Montgomery Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, - Am. Math. Soc., 1994.
  12. ↑ AA Karatsuba Approximation of exponential sums by shorter ones, - Proc. Indian. Acad. Sci. (Math. Sci.) 97: 1-3 , pp. 167-178 (1987).
  13. ↑ S. M. Voronin, A. A. Karatsuba The Riemann Zeta Function, - M .: Fizmatlit, 1994.
  14. ↑ A. A. Karatsuba, M. A. Korolev A theorem on the approximation of a trigonometric sum shorter, - Izvestiya RAS. Series of Mathematics, vol. 71, No. 2, p. 123-150 (2007).
Source - https://ru.wikipedia.org/w/index.php?title=ATC-theore&oldid=86215354


More articles:

  • Ro (Kana)
  • Labor Group
  • Someone in London
  • Lyadova, Lyudmila Alekseevna
  • Tashiro, Masashi
  • Yelnya (Rudnyansky district)
  • Alekseevka (Komi)
  • Japan Figure Skating Championship 2007
  • Araujo, William Francisco
  • Kolomeytsev, Nikolay Nikolaevich

All articles

Clever Geek | 2019