Clever Geek Handbook
📜 ⬆️ ⬇️

Quaternion Analysis

Quaternion analysis is a branch of mathematics that studies the regular quaternion- valued functions of a quaternion variable. Due to the noncommutativity of quaternion algebra, there are various non-equivalent approaches to the definition of regular quaternion functions. This article will mainly deal with Fueter's approach [1] .

Defining a regular function

Consider the operator

∂¯=∂∂q¯=∂∂t+i→∂∂x+j→∂∂y+k→∂∂z{\ displaystyle {\ bar {\ partial}} = {\ frac {\ partial} {\ partial {\ bar {q}}}} = {\ frac {\ partial} {\ partial t}} + {\ vec { i}} {\ frac {\ partial} {\ partial x}} + {\ vec {j}} {\ frac {\ partial} {\ partial y}} + {\ vec {k}} {\ frac {\ partial} {\ partial z}}} {\bar  \partial }={\frac  {\partial }{\partial {\bar  q}}}={\frac  {\partial }{\partial t}}+{\vec  i}{\frac  {\partial }{\partial x}}+{\vec  j}{\frac  {\partial }{\partial y}}+{\vec  k}{\frac  {\partial }{\partial z}}

Quaternion Variable Functionf:H→H {\ displaystyle f \ colon \ mathbb {H} \ to \ mathbb {H}} {\displaystyle f\colon \mathbb {H} \to \mathbb {H} } called regular if

∂¯f=0{\ displaystyle {\ bar {\ partial}} f = 0} {\bar  \partial }f=0


Harmonic functions

Let be∂¯f=0 {\ displaystyle {\ bar {\ partial}} f = 0} {\bar  \partial }f=0 then∂∂¯f=0 {\ displaystyle \ partial {\ bar {\ partial}} f = 0} \partial {\bar  \partial }f=0 . It is easy to verify that the operator∂∂¯ {\ displaystyle \ partial {\ bar {\ partial}}} \partial {\bar  \partial } has the form

∂∂¯=∂2∂t2+∂2∂x2+∂2∂y2+∂2∂z2=Δfour{\ displaystyle \ partial {\ bar {\ partial}} = {\ frac {\ partial ^ {2}} {\ partial t ^ {2}}} + {\ frac {\ partial ^ {2}} {\ partial x ^ {2}}} + {\ frac {\ partial ^ {2}} {\ partial y ^ {2}}} + {\ frac {\ partial ^ {2}} {\ partial z ^ {2}} } = \ Delta _ {4}} \partial {\bar  \partial }={\frac  {\partial ^{2}}{\partial t^{2}}}+{\frac  {\partial ^{2}}{\partial x^{2}}}+{\frac  {\partial ^{2}}{\partial y^{2}}}+{\frac  {\partial ^{2}}{\partial z^{2}}}=\Delta _{4}

and coincides with the Laplace operator inRfour {\ displaystyle \ mathbb {R} ^ {4}} {\displaystyle \mathbb {R} ^{4}} . Thus, all components of a regular quaternion function are harmonic functions inRfour {\ displaystyle \ mathbb {R} ^ {4}} {\displaystyle \mathbb {R} ^{4}} . Conversely, it can be shown that for any harmonic functionτ:Rfour→R {\ displaystyle \ tau \ colon \ mathbb {R} ^ {4} \ to \ mathbb {R}} {\displaystyle \tau \colon \mathbb {R} ^{4}\to \mathbb {R} } there is a regular quaternion functionf {\ displaystyle f} f such thatτ=Scalf {\ displaystyle \ tau = \ operatorname {Scal} \, f} \tau =\operatorname {Scal}\,f . Many properties of regular quaternion functions, in particular, the maximum principle , immediately follow from the properties of harmonic functions.

Some applications

Quaternions are actively used to calculate three-dimensional graphics in computer games.

Differentiating mappings

Let bey=f(x) {\ displaystyle y = f (x)}   Is a function defined on the body of quaternions. We can define the concept of the left derivativeyl′ {\ displaystyle y '_ {l}}   at the pointx=a {\ displaystyle x = a}   like the number that

f(x)-f(a)=yl′(x-a)+o(x-a){\ displaystyle f (x) -f (a) = y '_ {l} (xa) + o (xa)}  

Whereo(h) {\ displaystyle o (h)}   - infinitesimal fromh {\ displaystyle h}   , i.e

limh→0|o(h)||h|=0{\ displaystyle \ lim _ {h \ to 0} {\ frac {| o (h) |} {| h |}} = 0}   .

Many functions that have a left derivative are bounded. For example, features like

y=axb{\ displaystyle y = axb}  
y=x2{\ displaystyle y = x ^ {2}}  

do not have a left derivative.

Consider the increment of these functions more closely.

a(x+h)b-axb=ahb{\ displaystyle a (x + h) b-axb = ahb}  
(x+h)2-x2=xh+hx+h2{\ displaystyle (x + h) ^ {2} -x ^ {2} = xh + hx + h ^ {2}}  

It is easy to verify that the expressions

ahb{\ displaystyle ahb}   andxh+hx {\ displaystyle xh + hx}  

are linear functions of a quaternionh {\ displaystyle h}   . This observation is the basis for the following definition [2] .

Continuous display

f:H→H{\ displaystyle f: \ mathbb {H} \ rightarrow \ mathbb {H}}  

called differentiable on the setU⊂H {\ displaystyle U \ subset \ mathbb {H}}   if at every pointx∈U {\ displaystyle x \ in U}   display changef {\ displaystyle f}   can be represented as

f(x+h)-f(x)=df(x)dx∘h+o(h){\ displaystyle f (x + h) -f (x) = {\ frac {df (x)} {dx}} \ circ h + o (h)}  

Where

df(x)dx:H→H{\ displaystyle {\ frac {df (x)} {dx}}: \ mathbb {H} \ rightarrow \ mathbb {H}}  

linear mapping of quaternion algebraH {\ displaystyle \ mathbb {H}}   ando:H→H {\ displaystyle o: \ mathbb {H} \ rightarrow \ mathbb {H}}   such a continuous mapping that

lima→0|o(a)||a|=0{\ displaystyle \ lim _ {a \ rightarrow 0} {\ frac {| o (a) |} {| a |}} = 0}  

Linear mapping

df(x)dx{\ displaystyle {\ frac {df (x)} {dx}}}  

called derivative mappingf {\ displaystyle f}   .

The derivative can be represented as [3]

df(x)dx=ds0f(x)dx⊗dsonef(x)dx{\ displaystyle {\ frac {df (x)} {dx}} = {\ frac {d_ {s0} f (x)} {dx}} \ otimes {\ frac {d_ {s1} f (x)} { dx}}}  

Respectively display differentialf {\ displaystyle f}   has the form

df=df(x)dx∘dx=(ds0f(x)dx⊗dsonef(x)dx)∘dx=ds0f(x)dxdxdsonef(x)dx{\ displaystyle df = {\ frac {df (x)} {dx}} \ circ dx = \ left ({\ frac {d_ {s0} f (x)} {dx}} \ otimes {\ frac {d_ { s1} f (x)} {dx}} \ right) \ circ dx = {\ frac {d_ {s0} f (x)} {dx}} dx {\ frac {d_ {s1} f (x)} { dx}}}  

Index summation is assumed here.s {\ displaystyle s}   . The number of terms depends on the choice of functionf {\ displaystyle f}   . Expressions

ds0df(x)dx,dsonef(x)dx{\ displaystyle {\ frac {d_ {s0} df (x)} {dx}}, {\ frac {d_ {s1} f (x)} {dx}}}  

are called components of the derivative.

Derivative satisfies equalities

d(f(x)+g(x))dx=df(x)dx+dg(x)dx{\ displaystyle {\ frac {d (f (x) + g (x))} {dx}} = {\ frac {df (x)} {dx}} + {\ frac {dg (x)} {dx }}}  
df(x)g(x)dx=df(x)dxg(x)+f(x)dg(x)dx{\ displaystyle {\ frac {df (x) g (x)} {dx}} = {\ frac {df (x)} {dx}} \ g (x) + f (x) \ {\ frac {dg (x)} {dx}}}  
df(x)g(x)dx∘h=(df(x)dx∘h)g(x)+f(x)(dg(x)dx∘h){\ displaystyle {\ frac {df (x) g (x)} {dx}} \ circ h = \ left ({\ frac {df (x)} {dx}} \ circ h \ right) \ g (x ) + f (x) \ left ({\ frac {dg (x)} {dx}} \ circ h \ right)}  
daf(x)bdx=adf(x)dxb{\ displaystyle {\ frac {daf (x) b} {dx}} = a \ {\ frac {df (x)} {dx}} \ b}  
daf(x)bdx∘h=a(df(x)dx∘h)b{\ displaystyle {\ frac {daf (x) b} {dx}} \ circ h = a \ left ({\ frac {df (x)} {dx}} \ circ h \ right) b}  

If ay=axb {\ displaystyle y = axb}   , then the derivative has the form

daxbdx=a⊗b,dy=daxbdx∘dx=adxb{\ displaystyle {\ frac {daxb} {dx}} = a \ otimes b, dy = {\ frac {daxb} {dx}} \ circ dx = a \, dx \, b}  
dtenaxbdx=a,delevenaxbdx=b{\ displaystyle {\ frac {d_ {10} axb} {dx}} = a, {\ frac {d_ {11} axb} {dx}} = b}  

If ay=x2 {\ displaystyle y = x ^ {2}}   then the derivative has the form

dx2dx=x⊗one+one⊗x,dy=dx2dx∘dx=xdx+dxx{\ displaystyle {\ frac {dx ^ {2}} {dx}} = x \ otimes 1 + 1 \ otimes x, dy = {\ frac {dx ^ {2}} {dx}} \ circ dx = x \ , dx + dx \, x}  

and the components of the derivative have the form

dtenx2dx=x,delevenx2dx=one{\ displaystyle {\ frac {d_ {10} x ^ {2}} {dx}} = x, {\ frac {d_ {11} x ^ {2}} {dx}} = 1}  
d20x2dx=one,d21x2dx=x{\ displaystyle {\ frac {d_ {20} x ^ {2}} {dx}} = 1, {\ frac {d_ {21} x ^ {2}} {dx}} = x}  

If ay=x-one {\ displaystyle y = x ^ {- 1}}   , then the derivative has the form

dx-onedx=-x-one⊗x-one,dy=dx-onedx∘dx=-x-onedxx-one{\ displaystyle {\ frac {dx ^ {- 1}} {dx}} = - x ^ {- 1} \ otimes x ^ {- 1}, dy = {\ frac {dx ^ {- 1}} {dx }} \ circ dx = -x ^ {- 1} dx \, x ^ {- 1}}  

and the components of the derivative are

dtenx-onedx=-x-one,delevenx-onedx=x-one{\ displaystyle {\ frac {d_ {10} x ^ {- 1}} {dx}} = - x ^ {- 1}, {\ frac {d_ {11} x ^ {- 1}} {dx}} = x ^ {- 1}}  

Notes

  1. ↑ Fueter, R. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen // Commentarii Mathematici Helvetici. - №1. - Birkhäuser Basel, 1936. - V. 8. 8. P. 371-378.
  2. ↑ Aleks Kleyn , eprint arXiv: 1601.03259 Introduction into Calculus over Banach algebra, 2016
  3. ↑ Expressiondspf(x)dx {\ displaystyle {\ frac {d_ {sp} f (x)} {dx}}}   is not a fraction and should be taken as a single symbol. This designation is proposed for compatibility with the designation of the derivative. Value of expressiondspf(x)dx {\ displaystyle {\ frac {d_ {sp} f (x)} {dx}}}   for a givenx {\ displaystyle x}   is a quaternion.

Literature

  • DB Sweetser , Doing Physics with Quaternions
  • A. Sudbery , Quaternionic Analysis, Department of Mathematics, University of York, 1977.
  • V.I. Arnold , Geometry of Spherical Curves and Quaternion Algebra , UMN, 1995, 50: 1 (301), 3-68

See also

  • Comprehensive analysis



Source - https://ru.wikipedia.org/w/index.php?title=Quternion_analysis&oldid=98801119


More articles:

  • Borisoglebsky Cathedral (Daugavpils)
  • List of Heroes of the Soviet Union (Pavkin - Panteleev)
  • James Longstreet
  • Diuma Mersiysky
  • Explosion Temperature
  • Deepwater Trench
  • Obol
  • Armenian-Georgian war
  • L'Echoppe
  • Vladimirrescu, Tudor

All articles

Clever Geek | 2019