The history of biology explores the development of biology - a science that studies the fundamental (most general) properties and laws of the evolutionary development of living things. The subject of the history of biology is the identification and general analysis of the main events and trends in the development of biological knowledge.
Until the 19th century, zoology , botany , anatomy, and physiology were part of a βknowledge packageβ called the β natural philosophy β that combined positive information about natural phenomena with speculative fantasies and erroneous conclusions about the causes of these phenomena. The history of biology as an independent science takes shape in the 19th century with the advent of evolutionary biology and cellular theory .
In the XX century, life began to be actively studied not only at the cellular level (and the whole organism), but also at the molecular level, and at the level of populations, communities, and ecosystems. A synthetic theory of evolution , molecular biology , and stress theory appeared. But the number of unsolved problems of biology is still large, and this stimulates the activities of biologists in the further development of this science.
| History of science |
| By subject |
|---|
| Maths |
| Natural Sciences |
| Astronomy |
| Biology |
| Botany |
| Geography |
| Geology |
| Soil science |
| Physics |
| Chemistry |
| Ecology |
| Social Sciences |
| Story |
| Linguistics |
| Psychology |
| Sociology |
| Philosophy |
| Economy |
| Technology |
| Computer Engineering |
| Agriculture |
| The medicine |
| Navigation |
| Categories |
Early Life
Antiquity
The foundations of knowledge about animals and plants were laid in the writings of Aristotle and his student Theophrastus . An important role was played by the works of Dioscorides , who compiled descriptions of medicinal substances (and among them about 600 plants), and Pliny , who tried to collect information about all natural bodies in his " Natural History ".
Aristotle (384β322 BC) left a significant number of works on animals. In treatises "On the parts of animals" and "History of animals" Aristotle considered the question of how to deal with the knowledge of animals, deal with one animal separately after another, or first learn the general for everyone, and then more and more particular, and did opt for the second method. In development of this plan, he, on the one hand, developed principles that should be followed when formulating definitions of certain groups of animals, listing their essential properties. On the other hand, he made a number of observations in search of the necessary connections between the individual properties of animals. For example, that all animals with bifurcated legs (artiodactyls) chew gum. In the work "On the generation of animals," Aristotle addressed questions about the reproduction and development of animals. In addition, he also owns a number of small zoological treatises. On the one hand, works on logic adjoin the zoological works of Aristotle, on the other, the treatise On the Soul. The descriptions of the structure and lifestyle of various animals in the works of Aristotle were sometimes very accurate, but many places subsequently suffered from errors in copying and translations in several languages. Among other things, he was the first to describe the so-called "Aristotelian lantern" - calcified armament of the mouth apparatus of sea ββurchins [1] and live birth in sharks .
Theophrastus' book (370-280 BC) Research on plants developed Aristotle's ideas about the need to formulate definitions based on essential properties, but this time on plants.
Middle Ages
The decline of the Roman Empire was accompanied by the disappearance or degradation of previous knowledge, although doctors included many of the achievements of antiquity in their practice. The conquest of a significant part of the empire by the Arabs led to the fact that the works of Aristotle and other ancient authors were preserved in Arabic translation [2] .
Medieval Arab medicine , science and philosophy made an important contribution to the development of knowledge about life in the VIII-XIII centuries, during the so-called Golden Age of Islam , or the Islamic agrarian revolution . For example, in zoology, Al-Jahiz (781β869) already expressed ideas about evolution [3] [4] and food chains [5] . He was an early representative of geographical determinism , philosophical doctrine of the influence of natural conditions on the national character and development of nation states [6] . Iranian author Abu Hanifa ad-Dinawari (828β895) is considered the founder of Arab botany . In his βBook of Plants,β he described more than 637 plant species and discussed the phases of plant growth and development [7] . In anatomy and physiology, the Persian physician Ar-Razi (865β925) experimentally refuted Galen 's doctrine of the β four vital juices β [8] . The renowned physician Avicenna (980-1037) in his work βThe Canon of Medicine β, until the 17th century the remaining reference book of European physicians [9] [10] , introduced the concept of clinical research and pharmacology [11] . The Spanish Arab Ibn Zuhr (1091-1161), by opening, proved that scabies is caused by a subcutaneous parasite [12] , and also introduced experimental surgery [13] and medical research on animals [14] . During the famine in Egypt in 1200, Abd al-Latif al-Baghdadi observed and studied the structure of human skeletons [15] .
Only a few European scientists gained fame in the Middle Ages. Among them, Hildegard of Bingen , Albert the Great and Frederick II (Holy Roman Emperor) made up the canon of natural history for early European universities , in which medicine was significantly inferior to the teaching of philosophy and theology [16] .
Rebirth
Only the Renaissance truly revived in Europe an interest in natural history and physiology . In 1543, the development of modern anatomy , based on the autopsy of human bodies , began with the book by Vesalius β De humani corporis fabrica β. Vesalius and his followers gradually replaced medieval scholasticism in medicine and physiology with empiricism , relying not so much on the authority of textbooks and abstract thinking, but on personal experience. Through herbal medicine, medicine also fueled interest in the study of plants. Brunfels , Fuchs and other authors of early publications on wild plants laid the foundation for a full-scale description of plant life [17] . The medieval genre of literature, the bestiary , about animals and their habits, with the works of Konrad Gesner and other authors of the 16th century, turned into a truly scientific direction [18] .
Artists such as Albrecht Durer and Leonardo da Vinci often worked side by side with naturalists and were also interested in the structure of the human and animal bodies, giving detailed descriptions of their anatomy [19] . The traditions of alchemy , supported by scientists such as Paracelsus , have contributed to the study of nature, inspiring researchers to experiment with both mineral and biological sources of pharmacological drugs [20] . The development of pharmacology has also contributed to the emergence of mechanism [21] .
XVII century
The most important events of the 17th century are the formation of a methodological natural history that laid the foundations for the systematics of animals and plants; the development of anatomy and the opening of the second circle of blood circulation; the beginning of microscopic studies, the discovery of microorganisms and the first description of plant cells, sperm and red blood cells of animals.
The completion of the βherbalistsβ tradition dates back to the 17th century. The Swiss doctor and botanist Caspar Baugin in his work β Pinax Theatri Botanici β collected all the plant species known at that time (about 6000), specifying synonyms. This was the last summary of such a scale, in which the tricks of "popular taxonomy" were still used. Groups of plants in the work of Bohen did not have characteristics indicating their distinctive features. Plant names were formed, as before, without strict rules, sometimes by adding modifier words to the name given by ancient Greek or Roman authors, sometimes by romanizing indigenous plant names. Bohen was familiar with the book of Cesalpino , but did not see the point in the application of the method, considering the establishment of synonyms more important. At the same time, from the middle of the 17th century, more and more works appeared, written in the tradition of methodological natural history, based on the work of Cesalpino.
Significant changes are observed in the field of anatomy and physiology of animals and plants. The English doctor William Harvey (1578-1657), making experiments with blood circulation and dissecting animals, made a number of important discoveries. He discovered venous valves that obstructed the flow of blood in the opposite direction, showed isolation of the right and left ventricles of the heart and opened a small circle of blood circulation (a similar discovery was made shortly before Miguel Servet burned by Calvinists for his theological views). Jan Swammerdam (1637β1680) and Marcello Malpigi (1628β1694) described the internal structure of many invertebrate animals. Malpigi described the vessels of plants and experimentally showed the presence of an upward and downward current in different vessels.
The Italian naturalist Francesco Redi (1626β1698) experimentally proved the impossibility of spawning flies from rotten meat (by tightening part of the pots with rotten meat with muslin, he was able to prevent the laying of eggs by flies). The already mentioned William Harvey made a detailed description of the development of chicken and a number of other animals and suggested that they all develop from eggs in one way or another, although he could not directly observe the eggs.
Finally, in the 17th century a completely new field of research was formed, connected with the invention of the microscope. The tractography β Micrography β published by Robert Hooke (1635β1703), which is devoted to the description of microscopic observations of a number of objects of animate and inanimate nature (cork, flea, ant, salt crystals, etc.), as well as material culture (needle point, razor blade) , a point in the book, etc.), caused a wide public resonance. In addition to serving as a source of inspiration for Jonathan Swift in some fragments of Gulliver's Travels , he created a fashion for microscopic studies, including biological objects. One of the zealous lovers of microscopes was the Dutch artisan Anthony van Levenguk (1632-1723), who made observations using simple microscopes made by him and sent the results of observations for publication to the Royal Society of London . Levenguk managed to describe and sketch a number of microscopic creatures ( rotifers , ciliates , bacteria ), red blood cells, and human sperm.
18th century
The parallel development of natural history on the one hand and anatomy and physiology on the other paved the way for the emergence of biology. In the field of natural history, the most significant events were the publication of the " Systems of Nature " by Karl Linney and the "General Natural History" by Georges Buffon .
The studies of Albrecht von Haller and Caspar Friedrich Wolf greatly expanded knowledge in the field of animal embryology and plant development. While Galler adhered to the concept of preformism , Wolf advocated the idea of epigenesis . Observations of the early development of the chicken allowed Wolf to show by the example of the formation of the tubular intestine from the initially flat rudiment that development cannot be reduced to purely quantitative growth without qualitative transformations.
The Emergence of Biology
The word "biology" from time to time appeared in the works of natural scientists until the 19th century, but its meaning was completely different at that time. Karl Linney , for example, called the "biologists" of the authors who composed the biographies of botanists. At the turn of the 18th and 19th centuries, three authors at once ( Burdakh , Treviranus , Lamarck ) used the word βbiologyβ in the modern sense to refer to the science of the general features of living bodies. Gottfried Reinhold Treviranus even put it in the title of the scientific work βBiologie; oder die Philosophie der lebenden Natur "(1802).
The most significant events of the first half of the 19th century were the formation of paleontology and the biological foundations of stratigraphy, the emergence of cell theory, the formation of comparative anatomy and comparative embryology, the development of biogeography and the widespread dissemination of transformative ideas. The central events of the second half of the 19th century were the publication of the Origin of Species by Charles Darwin and the spread of the evolutionary approach in many biological disciplines (paleontology, systematics, comparative anatomy and comparative embryology), the formation of phylogenetics, the development of cytology and microscopic anatomy, experimental physiology and experimental embryology, the formation concepts of a specific causative agent of infectious diseases, proof of the impossibility of spontaneous generation of life in modern times environmental conditions.
Chemists of that time saw a fundamental difference between organic and inorganic substances, in particular, in processes such as fermentation and decay . Since the days of Aristotle, they have been considered specifically biological. However, Friedrich WΓΆhler and Justus Liebig , following the Lavoisier methodology, showed that the organic world even then could often be analyzed by physical and chemical methods. In 1828, WΓΆhler chemically, that is, without the use of organic substances and biological processes, synthesized the organic substance urea , thereby presenting the first evidence to refute vitalism . Then the catalytic effect of acellular extracts ( enzymes ) on chemical reactions was discovered, due to which, by the end of the 19th century. the modern concept of enzymes was formulated, although the mathematical theory of enzymatic kinetics appeared only at the beginning of the 20th century [22] .
Physiologists such as Claude Bernard , using vivisection and other experimental methods, studied the chemical and physical properties of a living body, laying the foundations of endocrinology , biomechanics , the teaching of nutrition and digestion . In the second half of the XIX century. the variety and significance of experimental research both in medicine and in biology has continuously increased. The main task was controlled changes in life processes, and the experiment was at the center of biological education [23] .
XX century
In the XX century, with the rediscovery of Mendel's laws , the rapid development of genetics begins. By the 1920s not only the chromosomal theory of heredity is being formed, but also the first works appear that set the task of integrating the new doctrine of heredity and the theory of evolution. After the Second World War , the development of molecular biology begins. In the second half of the 20th century, significant progress was made in the study of life phenomena at the cellular and molecular level.
Classical Genetics
The year 1900 was marked by the βrediscoveryβ of Mendelβs laws . De Vries and other researchers independently came to understand the significance of Mendelβs work [24] . Soon after, cytologists came to the conclusion that the chromosomes are most likely to be the cell structures carrying the genetic material. In the years 1910-1915. Thomas Hunt Morgan and his team, working on the fruit fly Drosophila, developed the "Mendelian chromosome theory of heredity" [25] . Following Mendelβs example, they investigated the phenomenon of gene linkage from a quantitative point of view and postulated that genes are arranged linearly on the chromosomes, like beads on a string. They began to create gene maps of Drosophila genes, which became a widely used model organism, first for genetic and then molecular biological studies [26] .
De Frieze tried to combine the new genetic theory with the theory of evolution. He was the first to propose the term mutation for gene changes. In the 1920s β 1930s, population genetics appeared. In the works of Fisher , Haldane, and other authors, the theory of evolution, in the end, combined with classical genetics in the synthetic theory of evolution [27] .
In the second half of the 20th century, the ideas of population genetics had a significant impact on sociobiology and evolutionary psychology . In the 1960s, a mathematical theory of games appeared to explain altruism and its role in evolution through the selection of descendants. The synthetic theory of evolution was further developed, in which the concept of gene drift and other processes important for the emergence of highly developed organisms appeared [28] , which explained the reasons for the rapid evolutionary changes in the historically short time that previously formed the basis for the "theory of catastrophes" [29] . In 1980, Luis Alvarez proposed the meteorite hypothesis of the extinction of dinosaurs [30] . At the same time, in the early 1980s, other phenomena of mass extinction in the history of earthly life were statistically investigated [31] .
Biochemistry
By the end of the XIX century. The main pathways for the metabolism of drugs and poisons, protein, fatty acids, and urea synthesis were discovered [32] . At the beginning of the XX century. Vitamin research has begun. Improvement of laboratory work techniques, in particular, the invention of chromatography and electrophoresis stimulated the development of physiological chemistry, and biochemistry gradually separated from medicine into an independent discipline. In the 1920s and 1930s, Hans Krebs , Karl and Gerti Corey began to describe the main pathways of carbohydrate metabolism : the tricarboxylic acid cycle , glycolysis , gluconeogenesis . The study of the synthesis of steroids and porphyrins began . Between the 1930s and 1950s, Fritz Lipman and other authors described the role of adenosine triphosphate as a universal carrier of biochemical energy in the cell, as well as mitochondria as its main source of energy. These traditionally biochemical fields of research continue to develop so far [33] .
The origin of molecular biology
In connection with the advent of classical genetics, many biologists, including those working in the field of physical and chemical biology, tried to establish the nature of the gene . For this purpose, the Rockefeller Foundation has established several grants, and in 1938 the head of the scientific department of the Foundation Warren Weaver used the term molecular biology to designate a task. He is considered the author of the name of this area of ββbiology [34] .
ΠΠ°ΠΊ ΠΈ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΡ , ΡΠΌΠ΅ΠΆΠ½ΡΠ΅ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Ρ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ Π²ΠΈΡΡΡΠΎΠ»ΠΎΠ³ΠΈΡ (ΠΏΠΎΠ·ΠΆΠ΅ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΡΠ½Π½ΡΠ΅ Π² Π²ΠΈΠ΄Π΅ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ) Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ Π±ΡΡΠ½ΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°Π»ΠΈΡΡ Π½Π° ΡΡΡΠΊΠ΅ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Ρ ΠΈ Π΄ΡΡΠ³ΠΈΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ Π½Π°ΡΠΊ . ΠΠΎΡΠ»Π΅ Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΡΠ°Π³Π° Π½Π°ΡΠ°Π»ΠΈΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΠΈΡΡΡΠΎΠ² Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΈ ΠΈΡ Ρ ΠΎΠ·ΡΠ΅Π² [35] . ΠΡΠΎ ΡΠΎΠ·Π΄Π°Π»ΠΎ Π±Π°Π·Ρ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠ°Π½Π΄Π°ΡΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ°Π±ΠΎΡΡ Ρ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΡΠΌΠΈ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π΄Π°Π²Π°Π»ΠΈ Ρ ΠΎΡΠΎΡΠΎ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ, ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π·Π°Π»ΠΎΠΆΠΈΡΡ ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π³Π΅Π½Π΅ΡΠΈΠΊΠΈ .
ΠΡΠΎΠΌΠ΅ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠ°ΠΌΠΈ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ² ΡΡΠ°Π»ΠΈ ΠΌΡΡΠΊΠ° Π΄ΡΠΎΠ·ΠΎΡΠΈΠ»Π°, ΠΊΡΠΊΡΡΡΠ·Π° ΠΈ Ρ Π»Π΅Π±Π½Π°Ρ ΠΏΠ»Π΅ΡΠ΅Π½Ρ, Π½Π΅ΠΉΡΠΎΡΠΏΠΎΡΠ° Π³ΡΡΡΠ°Ρ , ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΠΈ, Π° ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠ° ΠΈ Π²ΡΡΠΎΠΊΠΎΡΠΊΠΎΡΠΎΡΡΠ½ΡΡ ΡΠ΅Π½ΡΡΠΈΡΡΠ³ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠ΅ΡΠ΅ΡΠΌΠΎΡΡΠ΅ΡΡ Π΄Π°ΠΆΠ΅ ΡΠ°ΠΌΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ Β«ΠΆΠΈΠ·Π½ΡΒ». ΠΠΎΠ½ΡΡΠΈΠ΅ ΠΎ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ Ρ Π²ΠΈΡΡΡΠΎΠ², Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π½Π΅ΡΠ΄Π΅ΡΠ½ΡΡ Π½ΡΠΊΠ»Π΅ΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΎΠ²ΡΡ ΡΡΡΡΠΊΡΡΡ ΡΡΠ»ΠΎΠΆΠ½ΠΈΠ»ΠΈ ΡΠ°Π½Π΅Π΅ ΠΏΡΠΈΠ½ΡΡΡΡ ΡΠ΅ΠΎΡΠΈΡ ΠΌΠ΅Π½Π΄Π΅Π»Π΅Π²ΡΠΊΠΈΡ Ρ ΡΠΎΠΌΠΎΡΠΎΠΌ [36] .
Π 1941 Π³ΠΎΠ΄Ρ ΠΠΈΠ΄Π» ΠΈ Π’Π΅ΠΉΡΠ΅ΠΌ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ ΡΠ²ΠΎΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ Β«ΠΎΠ΄ΠΈΠ½ Π³Π΅Π½ β ΠΎΠ΄ΠΈΠ½ ΡΠ΅ΡΠΌΠ΅Π½ΡΒ». Π 1943 Π³ΠΎΠ΄Ρ ΠΡΠ²Π°Π»ΡΠ΄ ΠΠΉΠ²Π΅ΡΠΈ, ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ ΡΠ°Π±ΠΎΡΡ, Π½Π°ΡΠ°ΡΡΡ Π€ΡΠ΅Π΄Π΅ΡΠΈΠΊΠΎΠΌ ΠΡΠΈΡΡΠΈΡΠΎΠΌ , ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ Π² Ρ ΡΠΎΠΌΠΎΡΠΎΠΌΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ Π±Π΅Π»ΠΎΠΊ, ΠΊΠ°ΠΊ Π΄ΡΠΌΠ°Π»ΠΈ ΡΠ°Π½Π΅Π΅, Π° ΠΠΠ . Π 1952 Π³ΠΎΠ΄Ρ ΡΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π±ΡΠ» ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅ Π₯Π΅ΡΡΠΈ β Π§Π΅ΠΉΠ· , ΠΈ ΡΡΠΎ Π±ΡΠ» Π»ΠΈΡΡ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ Π²Π°ΠΆΠ½ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ², Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΡΡ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠΉ ΡΠ°Π³ΠΎΠ²ΠΎΠΉ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΠ΅Π»ΡΠ±ΡΡΠΊΠ° . ΠΠ°ΠΊΠΎΠ½Π΅Ρ, Π² 1953 Π³ΠΎΠ΄Ρ Π£ΠΎΡΡΠΎΠ½ ΠΈ ΠΡΠΈΠΊ , ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡΡ Π½Π° ΡΠ°Π±ΠΎΡΠ΅ ΠΠΎΡΠΈΡΠ° Π£ΠΈΠ»ΠΊΠΈΠ½ΡΠ° ΠΈ Π ΠΎΠ·Π°Π»ΠΈΠ½Π΄Ρ Π€ΡΠ°Π½ΠΊΠ»ΠΈΠ½ , ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΡΠ²ΠΎΡ Π·Π½Π°ΠΌΠ΅Π½ΠΈΡΡΡ ΡΡΡΡΠΊΡΡΡΡ ΠΠΠ Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ ΡΠΏΠΈΡΠ°Π»ΠΈ. Π ΡΠ²ΠΎΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ Β« Molecular structure of Nucleic Acids Β» (Β«ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΡΡΡΡΠΊΡΡΡΠ° Π½ΡΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΡΡ ΠΊΠΈΡΠ»ΠΎΡΒ») ΠΎΠ½ΠΈ Π·Π°ΡΠ²ΠΈΠ»ΠΈ: Β«ΠΡ Π½Π°ΡΠ΅Π³ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΡ Π½Π΅ ΡΠΊΡΡΠ»ΠΎΡΡ ΡΠΎ, ΡΡΠΎ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΏΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΡ ΠΏΠΎΡΡΡΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ, ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°Β» [37] . ΠΠΎΠ³Π΄Π° ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π»Π΅Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΠΏΠΎΠ»ΡΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°ΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΏΠ»ΠΈΠΊΠ°ΡΠΈΠΈ Π±ΡΠ» ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ, Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ² ΡΡΠ°Π»ΠΎ ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π² Π½ΡΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΠ΅ ΠΊΠ°ΠΊΠΈΠΌ-ΡΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π°ΠΌΠΈΠ½ΠΎΠΊΠΈΡΠ»ΠΎΡΠ½ΡΡ ΠΎΡΡΠ°ΡΠΊΠΎΠ² Π² ΡΡΡΡΠΊΡΡΡΠ΅ Π±Π΅Π»ΠΊΠ°. ΠΠΎ ΠΈΠ΄Π΅Ρ ΠΎ Π½Π°Π»ΠΈΡΠΈΠΈ Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ΄Π° ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π» Π½Π΅ Π±ΠΈΠΎΠ»ΠΎΠ³, Π° ΡΠΈΠ·ΠΈΠΊ ΠΠ΅ΠΎΡΠ³ΠΈΠΉ ΠΠ°ΠΌΠΎΠ² .
Π Π°Π·Π²ΠΈΡΠΈΠ΅ Π±ΠΈΠΎΡ ΠΈΠΌΠΈΠΈ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²ΠΎ Π²ΡΠΎΡΠΎΠΉ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ XX Π²Π΅ΠΊΠ°
Π Π°ΡΡΠΈΡΡΠΎΠ²ΠΊΠ° Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠΎΠ΄Π° Π·Π°Π½ΡΠ»Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π»Π΅Ρ. ΠΡΠ° ΡΠ°Π±ΠΎΡΠ° Π±ΡΠ»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° Π³Π»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΠΈΡΠ΅Π½Π±Π΅ΡΠ³ΠΎΠΌ ΠΈ ΠΠΎΡΠ°Π½ΠΎΠΉ ΠΈ Π·Π°ΠΊΠΎΠ½ΡΠ΅Π½Π° ΠΊ ΠΊΠΎΠ½ΡΡ 1960-Ρ Π³ΠΎΠ΄ΠΎΠ² [38] . Π’ΠΎΠ³Π΄Π° ΠΆΠ΅ ΠΠ΅ΡΡΡ ΠΈ ΠΠ΅Π½Π΄ΡΡ ΠΈΠ· ΠΠ΅ΠΌΠ±ΡΠΈΠ΄ΠΆΠ° [39] Π²ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΡΡΡΠΊΡΡΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Π½ΠΎΠ²ΡΠΌΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΠΌΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅Ρ Π½ΠΈΠΊΠΈ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ Π±Π΅Π»ΠΊΠΎΠ² [40] . ΠΠ°ΠΊΠΎΠ± ΠΈ ΠΠΎΠ½ΠΎ ΠΈΠ· ΠΠ½ΡΡΠΈΡΡΡΠ° ΠΠ°ΡΡΠ΅ΡΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΠ΅ lac ΠΎΠΏΠ΅ΡΠΎΠ½Π° ΠΈ ΠΎΡΠΊΡΡΠ»ΠΈ ΠΏΠ΅ΡΠ²ΡΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ Π³Π΅Π½ΠΎΠ² . Π ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π΅ 1960-Ρ Π³ΠΎΠ΄ΠΎΠ² ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΈ Π½Π°ΡΠ»Π΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎΡΡΠΈ Π±ΡΠ»ΠΈ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ, Ρ ΠΎΡΡ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΠΌΠ΅Ρ Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΡΠΎΠ»ΡΠΊΠΎ Π½Π°ΡΠΈΠ½Π°Π»ΠΎΡΡ [41] [42] . ΠΠ΅ΡΠΎΠ΄Ρ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π±ΡΡΡΡΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΠ»ΠΈΡΡ Π² Π΄ΡΡΠ³ΠΈΠ΅ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Ρ, ΡΠ°ΡΡΠΈΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΌ ΡΡΠΎΠ²Π½Π΅ [43] . ΠΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΡΠΎ Π±ΡΠ»ΠΎ Π²Π°ΠΆΠ½ΠΎ Π΄Π»Ρ Π³Π΅Π½Π΅ΡΠΈΠΊΠΈ , ΠΈΠΌΠΌΡΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ , ΡΠΌΠ±ΡΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π½Π΅ΠΉΡΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ , Π° ΠΈΠ΄Π΅ΠΈ ΠΎ Π½Π°Π»ΠΈΡΠΈΠΈ Β«Π³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡΒ» (ΡΡΠΎΡ ΡΠ΅ΡΠΌΠΈΠ½ Π±ΡΠ» ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΠ°ΠΊΠΎΠ±ΠΎΠΌ ΠΈ ΠΠΎΠ½ΠΎ ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΎΠΉ ) ΠΏΡΠΎΠ½ΠΈΠΊΠ»ΠΈ ΠΈ Π²ΠΎ Π²ΡΠ΅ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Ρ [44] .
Π ΠΈΠΌΠΌΡΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² ΡΠ²ΡΠ·ΠΈ Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡΠ²ΠΈΠ»Π°ΡΡ ΡΠ΅ΠΎΡΠΈΡ ΠΊΠ»ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π»Π΅ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π·Π²ΠΈΠ²Π°Π»ΠΈ ΠΡΠ½Π΅ ΠΈ ΠΡΡΠ½Π΅Ρ [45] . Π Π±ΠΈΠΎΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠΈΠΈ , Π½Π°ΡΠΈΠ½Π°Ρ Ρ 1970-Ρ Π³ΠΎΠ΄ΠΎΠ², ΠΏΡΠΈΠ²Π΅Π»ΠΎ ΠΊ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΡΠΏΠ΅ΠΊΡΡΠ° ΠΏΡΠΎΠ΄ΡΡΠ΅Π½ΡΠΎΠ² Π½ΠΎΠ²ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ², Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ², ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ ΡΡΠ΅ΠΎΠ½ΠΈΠ½ ΠΈ ΠΈΠ½ΡΡΠ»ΠΈΠ½ .
ΠΠ΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠΈΡ ΠΎΡΠ½ΠΎΠ²Π°Π½Π° ΠΏΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΠ΅Ρ Π½ΠΈΠΊΠΈ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ ΠΠΠ , ΡΠΎ Π΅ΡΡΡ ΡΠ°ΠΊΠΈΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ» ΠΠΠ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΠ΅ΡΠ΅ΡΡΡΠΎΠ΅Π½Ρ Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΠΈ ΠΏΡΡΡΠΌ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΠΈΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ ΡΠ°ΡΡΠ΅ΠΉ ( Π³Π΅Π½ΠΎΠ² ΠΈ ΠΈΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ²). ΠΠ»Ρ ΡΠ°Π·ΡΠ΅Π·Π°Π½ΠΈΡ ΠΠΠ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ΅ΡΠΌΠ΅Π½ΡΡ ΡΠ΅ΡΡΡΠΈΠΊΡΠ°Π·Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ Π±ΡΠ»ΠΈ ΠΎΡΠΊΡΡΡΡ Π² ΠΊΠΎΠ½ΡΠ΅ 1960-Ρ Π³ΠΎΠ΄ΠΎΠ². Π‘ΡΠΈΠ²Π°Π½ΠΈΠ΅ ΠΊΡΡΠΊΠΎΠ² ΠΠΠ ΠΊΠ°ΡΠ°Π»ΠΈΠ·ΠΈΡΡΠ΅Ρ Π΄ΡΡΠ³ΠΎΠΉ ΡΠ΅ΡΠΌΠ΅Π½Ρ, Π»ΠΈΠ³Π°Π·Π° . Π’Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΈ Π²Π²Π΅ΡΡΠΈ Π² Π±Π°ΠΊΡΠ΅ΡΠΈΠΈ ΠΠΠ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π³Π΅Π½ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΠΌΡ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΡ. ΠΡΠ»ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΡ, ΠΏΠΎΠ»ΡΡΠΈΠ² ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΡ ΠΠΠ, ΠΏΠ΅ΡΠ΅ΠΆΠΈΠ²Π΅Ρ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΈΡ , ΠΎΠ½Π° Π½Π°ΡΠ½Π΅Ρ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ°ΡΡΡΡ Π½Π° ΡΡΠ΅Π΄Π΅, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ Π΄Π°Π½Π½ΡΠΉ Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊ, ΠΈ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ ΠΏΠΎ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΉ ΡΡΠ°Π½ΡΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° [46] .
ΠΡΠΈΠ½ΠΈΠΌΠ°Ρ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π½ΠΎΠ²ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ, Π½ΠΎ ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ³ΡΠΎΠ·Ρ ΠΎΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΠΊΠΈΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ (Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΎΡ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΈΠΉ Ρ ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, ΡΠΏΠΎΡΠΎΠ±Π½ΡΠΌΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΡΡ Π³Π΅Π½Ρ Π²ΠΈΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΠ°) Π½Π°ΡΡΠ½ΠΎΠ΅ ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²ΠΎ Π²Π²Π΅Π»ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΠΌΠΎΡΠ°ΡΠΎΡΠΈΠΉ Π½Π° Π½Π°ΡΡΠ½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ Ρ ΡΠ΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½ΡΠ½ΡΠΌΠΈ ΠΠΠ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° Π² 1975 Π³ΠΎΠ΄Ρ Π½Π° ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΠΈ Π½Π΅ Π±ΡΠ»ΠΈ Π²ΡΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ ΠΏΠΎ ΡΠ΅Ρ Π½ΠΈΠΊΠ΅ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΎΠ΄Π° ΡΠ°Π±ΠΎΡΠ°Ρ [47] . ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π½Π°ΡΡΡΠΏΠΈΠ» ΠΏΠ΅ΡΠΈΠΎΠ΄ Π±ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½ΠΎΠ²ΡΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ.
Π ΠΊΠΎΠ½ΡΡ 1970-Ρ Π³ΠΎΠ΄ΠΎΠ² ΠΏΠΎΡΠ²ΠΈΠ»ΠΈΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ ΠΠΠ , Ρ ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΊΠΎΡΠΎΡΠΊΠΈΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² ΠΠΠ (ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄ΠΎΠ²), Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΠΠ Π² ΠΊΠ»Π΅ΡΠΊΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ( ΡΡΠ°Π½ΡΡΠ΅ΠΊΡΠΈΡ ) [48] . Π§ΡΠΎΠ±Ρ ΡΠ°Π±ΠΎΡΠ°ΡΡ Ρ Π³Π΅Π½Π°ΠΌΠΈ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ , Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π±ΡΠ»ΠΎ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Ρ ΡΠ°Π·Π»ΠΈΡΠΈΡΠΌΠΈ Π² ΡΡΡΡΠΎΠΉΡΡΠ²Π΅ Π³Π΅Π½ΠΎΠ² ΠΏΡΠΎΠΊΠ°ΡΠΈΠΎΡ ΠΈ ΡΡΠΊΠ°ΡΠΈΠΎΡ . ΠΡΠ° Π·Π°Π΄Π°ΡΠ° Π±ΡΠ»Π° Π² ΡΠ΅Π»ΠΎΠΌ ΡΠ΅ΡΠ΅Π½Π° Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΎΡΠΊΡΡΡΠΈΡ ΡΠΏΠ»Π°ΠΉΡΠΈΠ½Π³Π° [49] .
Π 1980-ΠΌ Π³ΠΎΠ΄Π°ΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π½ΡΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΡΡ ΠΊΠΈΡΠ»ΠΎΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΈΡ ΠΊΠ°ΠΊ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π΄Π»Ρ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΊΠ»Π°Π΄ΠΈΡΡΠΈΠΊΠΈ ; ΡΠ°ΠΊ ΠΏΠΎΡΠ²ΠΈΠ»Π°ΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½Π°Ρ ΡΠΈΠ»ΠΎΠ³Π΅Π½Π΅ΡΠΈΠΊΠ° . Π 1990 Π³ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π½ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠ΅ΠΉ 16S ΡΠ ΠΠ ΠΠ°ΡΠ» ΠΡΠ·Π΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΠ» Π½ΠΎΠ²ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΆΠΈΠ²ΡΡ ΡΡΡΠ΅ΡΡΠ²: ΡΠ°ΡΡΡΠ²ΠΎ ΠΌΠΎΠ½Π΅Ρ Π±ΡΠ»ΠΎ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΎ Π½Π° Π΄Π²Π° Π΄ΠΎΠΌΠ΅Π½Π° ΡΡΠ±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΠΈ Π°ΡΡ Π΅ΠΉ , Π° ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ΅ΡΡΡΠ΅ ΡΠ°ΡΡΡΠ²Π° (ΠΏΡΠΎΡΠΈΡΡ, Π³ΡΠΈΠ±ΠΎΠ², ΡΠ°ΡΡΠ΅Π½ΠΈΠΉ ΠΈ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ ) β ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½Ρ Π² ΠΎΠ΄ΠΈΠ½ Π΄ΠΎΠΌΠ΅Π½ ΡΡΠΊΠ°ΡΠΈΠΎΡ [50] .
ΠΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π² 1980-Ρ Π³ΠΎΠ΄Π°Ρ ΡΠ΅Ρ Π½ΠΈΠΊΠΈ ΠΠ¦Π Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΏΡΠΎΡΡΠΈΠ»ΠΎ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ ΡΠ°Π±ΠΎΡΡ Ρ ΠΠΠ ΠΈ ΠΎΡΠΊΡΡΠ»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π΄Π»Ρ ΠΎΡΠΊΡΡΡΠΈΡ Π½ΠΎΠ²ΡΡ ΡΠ°Π½Π΅Π΅ Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΡΡ Π³Π΅Π½ΠΎΠ², Π½ΠΎ ΠΈ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΠ΅ΠΉ Π½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ΅Π»ΡΡ Π³Π΅Π½ΠΎΠΌΠΎΠ² , ΡΠΎ Π΅ΡΡΡ Π΄Π»Ρ ΠΈΡΡΠ΅ΡΠΏΡΠ²Π°ΡΡΠ΅Π³ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ Π²ΡΠ΅Ρ Π³Π΅Π½ΠΎΠ² ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° [51] . Π 1990-Ρ Π³ΠΎΠ΄Π°Ρ ΡΡΠ° Π·Π°Π΄Π°ΡΠ° Π±ΡΠ»Π° Π² ΡΠ΅Π»ΠΎΠΌ ΡΠ΅ΡΠ΅Π½Π° Π² Ρ ΠΎΠ΄Π΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ° Β« ΠΠ΅Π½ΠΎΠΌ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Β» [52] .
XXI Π²Π΅ΠΊ ΠΈ Π½ΠΎΠ²ΡΠ΅ ΡΡΠ±Π΅ΠΆΠΈ
ΠΠΎ ΠΌΠ½Π΅Π½ΠΈΡ ΠΠ°ΡΠ»Π° ΠΡΠ·Π΅ (ΡΠΈΡΠ΅ β ΠΏΠΎ ΠΌΠ½Π΅Π½ΠΈΡ ΠΡΠ·Π΅ ΠΈ ΠΠΎΠ»Π΄Π΅Π½ΡΠ΅Π»ΡΠ΄Π°), Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ XXI Π²Π΅ΠΊΠ° β ΡΡΠΎ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ Π½Π°ΡΠΊΠ°, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° ΡΠ²ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ Π²Π·Π³Π»ΡΠ΄Π°Ρ , ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠ°Ρ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΆΠΈΠ·Π½ΠΈ Π½Π΅ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠ΅Π΄ΡΠΊΡΠΈΠΎΠ½ΠΈΠ·ΠΌΠ° , ΠΊΠ°ΠΊ Π² XX Π²Π΅ΠΊΠ΅ , Π° ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Ρ ΠΎΠ»ΠΈΠ·ΠΌΠ° [53] [54] . ΠΠΎΡΠ»Π΅ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠ° Β« ΠΠ΅Π½ΠΎΠΌ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Β» Π±ΡΠ»ΠΎ Π½Π°ΡΠ°ΡΠΎ ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΎΠ²: ENCODE , 1000 Π³Π΅Π½ΠΎΠΌΠΎΠ² , Β« ΠΡΠΎΡΠ΅ΠΎΠΌ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Β», FANTOM [55] β ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ , Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΠΊΠΈΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΡ ΠΊΠ°ΠΊ OpenWorm , Human Brain Project , ΠΈ Ρ. Π΄.
ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΎΡΠ»ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ΅ΡΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ XXI Π²Π΅ΠΊΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π³ΡΠ°ΠΆΠ΄Π°Π½ΡΠΊΠ°Ρ Π½Π°ΡΠΊΠ° , ΡΠ°Π½Π΅Π΅ ΠΊΡΠ΄Π° ΠΌΠ΅Π½Π΅Π΅ ΡΠ°Π·Π²ΠΈΡΠ°Ρ. ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ ΠΌΠΎΠ³ΡΡ ΡΠ»ΡΠΆΠΈΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΏΡΠΎΠ΅ΠΊΡΡ ΠΊΠ°ΠΊ EyeWire ΠΈ Foldit .
ΠΡΡΠΎΡΠΈΠΎΠ³ΡΠ°ΡΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ
ΠΠΎ ΠΌΠ½Π΅Π½ΠΈΡ ΠΈΡΡΠΎΡΠΈΠΊΠ° Π½Π°ΡΠΊΠΈ ΠΠ°Π½ΠΈΠΈΠ»Π° ΠΠ΅Π±Π΅Π΄Π΅Π²Π° , ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π·Π½Π°Π½ΠΈΠΉ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠ°Π·Π΄Π΅Π»Π°Ρ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π½Π°ΡΠΊΠΈ ΡΠΈΠ»ΡΠ½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ, Π½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΠΏΠΎ ΡΡΠΎΠ²Π½Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΡΡΠΎΡΠΈΠΎΠ³ΡΠ°ΡΠΈΠΈ ΡΡΠ° Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π° Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ ΠΎΠ΄Π½ΠΎ ΠΈΠ· ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ ΠΌΠ΅ΡΡ [56] .
Notes
- β Π¨ΠΈΠΌΠΊΠ΅Π²ΠΈΡ Π. Π. ΠΡΠΈΡΡΠΎΡΠ΅Π»Π΅Π² ΡΠΎΠ½Π°ΡΡ // ΠΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΠΎΠ²Π°ΡΡ ΠΡΠΎΠΊΠ³Π°ΡΠ·Π° ΠΈ ΠΡΡΠΎΠ½Π° : Π² 86 Ρ. (82 Ρ. ΠΈ 4 Π΄ΠΎΠΏ.). - SPb. , 1890-1907.
- β Mayr, The Growth of Biological Thought , pp 91-94
- β Mehmet Bayrakdar, Β«Al-Jahiz And the Rise of Biological EvolutionismΒ», The Islamic Quarterly , Third Quarter, 1983, London .
- β Conway Zirkle (1941), Natural Selection before the Β«Origin of SpeciesΒ», Proceedings of the American Philosophical Society 84 (1): 71-123.
- β Frank N. Egerton, Β«A History of the Ecological Sciences, Part 6: Arabic Language Science β Origins and ZoologicalΒ», Bulletin of the Ecological Society of America , April 2002: 142β146 [143]
- β Lawrence I. Conrad (1982), Β«Taun and Waba: Conceptions of Plague and Pestilence in Early IslamΒ», Journal of the Economic and Social History of the Orient 25 (3), pp. 268β307 [278].
- β Fahd, Toufic, "Botany and agriculture", Ρ. 815 , in Morelon, RΓ©gis & Roshdi Rashed (1996), Encyclopedia of the History of Arabic Science , vol. 3, Routledge , ISBN 0415124107
- β G. Stolyarov II (2002), Β«Rhazes: The Thinking Western PhysicianΒ», The Rational Argumentator , Issue VI.
- β The Canon of Medicine (work by Avicenna) , EncyclopΓ¦dia Britannica
- β Amber Haque (2004), Β«Psychology from Islamic Perspective: Contributions of Early Muslim Scholars and Challenges to Contemporary Muslim PsychologistsΒ», Journal of Religion and Health 43 (4), p. 357β377 [375].
- β D. Craig Brater and Walter J. Daly (2000), Β«Clinical pharmacology in the Middle Ages: Principles that presage the 21st centuryΒ», Clinical Pharmacology & Therapeutics 67 (5), p. 447β450 [449].
- β Islamic medicine , Hutchinson Encyclopedia .
- β Rabie E. Abdel-Halim (2006), Β«Contributions of Muhadhdhab Al-Deen Al-Baghdadi to the progress of medicine and urologyΒ», Saudi Medical Journal 27 (11): 1631β1641.
- β Rabie E. Abdel-Halim (2005), Β«Contributions of Ibn Zuhr (Avenzoar) to the progress of surgery: A study and translations from his book Al-TaisirΒ», Saudi Medical Journal 2005; Vol. 26 (9): 1333β1339 .
- β Emilie Savage-Smith (1996), Β«MedicineΒ», in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science , Vol. 3, p. 903β962 [951-952]. Routledge , London and New York.
- β Mayr, The Growth of Biological Thought , pp 91-94:
"ΠΡΠ»ΠΈ ΠΈΠΌΠ΅ΡΡ Π² Π²ΠΈΠ΄Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ Π² ΡΠ΅Π»ΠΎΠΌ, Π΄ΠΎ ΠΊΠΎΠ½ΡΠ° XVIII - Π½Π°ΡΠ°Π»Π° XIX Π²Π΅ΠΊΠ° ΡΠ½ΠΈΠ²Π΅ΡΡΠΈΡΠ΅ΡΡ Π½Π΅ Π±ΡΠ»ΠΈ ΡΠ΅Π½ΡΡΠ°ΠΌΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ." - β Mayr, The Growth of Biological Thought , pp 94-95, 154β158
- β Mayr, The Growth of Biological Thought , pp 166β171
- β Magner, A History of the Life Sciences , pp 80-83
- β Magner, A History of the Life Sciences , pp 90-97
- β Merchant, The Death of Nature , chapters 1, 4, and 8
- β Fruton, Proteins, Enzymes, Genes , chapter 4; Coleman, Biology in the Nineteenth Century , chapter 6
- β Rothman and Rothman, The Pursuit of Perfection , chapter 1; Coleman, Biology in the Nineteenth Century , chapter 7
- β Randy Moore, Β« The 'Rediscovery' of Mendel's Work Β», Bioscene , Volume 27(2), May 2001.
- β TH Morgan, AH Sturtevant, HJ Muller, CB Bridges (1915) The Mechanism of Mendelian Heredity Henry Holt and Company.
- β Garland Allen, Thomas Hunt Morgan: The Man and His Science (1978), chapter 5; see also: Kohler, Lords of the Fly and Sturtevant, A History of Genetics
- β Smocovitis, Unifying Biology , chapter 5; see also: Mayr and Provine (eds.), The Evolutionary Synthesis
- β Gould, The Structure of Evolutionary Theory , chapter 8; Larson, Evolution , chapter 12
- β Larson, Evolution , pp 271β283
- β Zimmer, Evolution , pp 188β195
- β Zimmer, Evolution , pp 169β172
- β Caldwell, Β«Drug metabolism and pharmacogeneticsΒ»; Fruton, Proteins, Enzymes, Genes , chapter 7
- β Fruton, Proteins, Enzymes, Genes , chapters 6 and 7
- β Morange, A History of Molecular Biology , chapter 8; Kay, The Molecular Vision of Life , Introduction, Interlude I, and Interlude II
- β See: Summers, FΓ©lix d'Herelle and the Origins of Molecular Biology
- β Creager, The Life of a Virus , chapters 3 and 6; Morange, A History of Molecular Biology , chapter 2
- β Watson, James D. and Francis Crick. Β« Molecular structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid Β», Nature , vol. 171, , no. 4356, pp 737β738
- β Morange, A History of Molecular Biology , chapters 3, 4, 11, and 12; Fruton, Proteins, Enzymes, Genes , chapter 8; on the Meselson-Stahl experiment, see: Holmes, Meselson, Stahl, and the Replication of DNA
- β On the Cambridge lab, see de Chadarevian, Designs for Life ; on comparisons with the Pasteur Institute, see Creager, Β«Building Biology across the AtlanticΒ»
- β de Chadarevian, Designs for Life , chapters 4 and 7
- β Pardee A. PaJaMas in Paris (Π°Π½Π³Π».) // Trends Genet. : journal. - 2002. - Vol. 18 , no. 11 . β P. 585β587 . β DOI : 10.1016/S0168-9525(02)02780-4 . β PMID 12414189 .
- β Morange, A History of Molecular Biology , chapter 14
- β Wilson, Naturalist , chapter 12; Morange, A History of Molecular Biology, chapter 15
- β Morange, A History of Molecular Biology , chapter 15; Keller, The Century of the Gene , chapter 5
- β Morange, A History of Molecular Biology, pp 126β132, 213β214
- β Morange, A History of Molecular Biology , chapters 15 and 16
- β Bud, The Uses of Life , chapter 8; Gottweis, Governing Molecules , chapter 3; Morange, A History of Molecular Biology , chapter 16
- β Morange, A History of Molecular Biology , chapter 16
- β Morange, A History of Molecular Biology , chapter 17
- β Sapp, Genesis , chapters 18 and 19
- β Morange, A History of Molecular Biology , chapter 20; see also: Rabinow, Making PCR
- β Davies, Cracking the Genome , Introduction; see also: Sulston, The Common Thread
- β Woese CR A new biology for a new century //Microbiology and Molecular Biology Reviews. β 2004. β Π’. 68. β β. 2. β Π‘. 173β186.
- β [Woese CR, Goldenfeld N. How the microbial world saved evolution from the scylla of molecular biology and the charybdis of the modern synthesis //Microbiology and Molecular Biology Reviews. β 2009. β Π’. 73. β β. 1. β Π‘. 14-21.]
- β [Π‘Π°ΠΉΡ ΠΏΡΠΎΠ΅ΠΊΡΠ° FANTOM]
- β ΠΠ΅Π±Π΅Π΄Π΅Π² Π. Π. ΠΡΠ΅ΡΠΊΠΈ ΠΏΠΎ Π±ΠΎΡΠ°Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΡΡΠΎΡΠΈΠΎΠ³ΡΠ°ΡΠΈΠΈ (XIX β Π½Π°ΡΠ°Π»ΠΎ XX Π².) : [ Π°ΡΡ . 15 ΠΌΠ°ΡΡΠ° 2016 ] / ΠΡΠ². ed. Π. Π. ΠΠΈΡΠΏΠΈΡΠ½ΠΈΠΊΠΎΠ² . β Π. : ΠΠ°ΡΠΊΠ°, 1986. β Π‘. 3. β 165 Ρ. β 1600 ΡΠΊΠ·.
Literature
- ΠΠ°Π±ΠΈΠΉ Π’. Π., ΠΠΎΡ Π°Π½ΠΎΠ²Π° Π. Π., ΠΠΎΡΡΡΠΊ Π. Π. ΠΈ Π΄Ρ. ΠΠΈΠΎΠ»ΠΎΠ³ΠΈ: ΠΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ. β ΠΠΈΠ΅Π², 1984.
- ΠΡΡΠΎΡΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ Π΄ΡΠ΅Π²Π½Π΅ΠΉΡΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ Π΄ΠΎ Π½Π°ΡΠΈΡ Π΄Π½Π΅ΠΉ. Ρ. 1-2. Π., 1972β1975.
- ΠΠΈΡΠ·ΠΎΡΠ½ Π. Π. ΠΡΡΠ΄Ρ ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. 2-Π΅ ΠΈΠ·Π΄., ΡΠ°ΡΡ. β Π., 2006. β 371 Ρ. ISBN 5-02-033737-4 .
Links
- International Society for History, Philosophy, and Social Studies of Biology β ΡΠ°ΠΉΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΠΈΡΡΠΎΡΠΈΠΈ, ΡΠΈΠ»ΠΎΡΠΎΡΠΈΠΈ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ
- ΠΡΡΠΎΡΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Historyworld.net
- ΠΡΡΠΎΡΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Bioexplorer.Net β ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΡ ΡΡΡΠ»ΠΎΠΊ ΠΏΠΎ ΠΈΡΡΠΎΡΠΈΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ