Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Biology history

Participants of the VII International Zoological Congress ( Boston ) in group photography in New York (1907)

The history of biology explores the development of biology - a science that studies the fundamental (most general) properties and laws of the evolutionary development of living things. The subject of the history of biology is the identification and general analysis of the main events and trends in the development of biological knowledge.

Until the 19th century, zoology , botany , anatomy, and physiology were part of a β€œknowledge package” called the β€œ natural philosophy ” that combined positive information about natural phenomena with speculative fantasies and erroneous conclusions about the causes of these phenomena. The history of biology as an independent science takes shape in the 19th century with the advent of evolutionary biology and cellular theory .

In the XX century, life began to be actively studied not only at the cellular level (and the whole organism), but also at the molecular level, and at the level of populations, communities, and ecosystems. A synthetic theory of evolution , molecular biology , and stress theory appeared. But the number of unsolved problems of biology is still large, and this stimulates the activities of biologists in the further development of this science.

History of science
PurehuggingRoseStar.png
By subject
Maths
Natural Sciences
Astronomy
Biology
Botany
Geography
Geology
Soil science
Physics
Chemistry
Ecology
Social Sciences
Story
Linguistics
Psychology
Sociology
Philosophy
Economy
Technology
Computer Engineering
Agriculture
The medicine
Navigation
Categories

Early Life

Antiquity

 
Blueberries from De materia medica Pedoscos Dioscorides

The foundations of knowledge about animals and plants were laid in the writings of Aristotle and his student Theophrastus . An important role was played by the works of Dioscorides , who compiled descriptions of medicinal substances (and among them about 600 plants), and Pliny , who tried to collect information about all natural bodies in his " Natural History ".

Aristotle (384–322 BC) left a significant number of works on animals. In treatises "On the parts of animals" and "History of animals" Aristotle considered the question of how to deal with the knowledge of animals, deal with one animal separately after another, or first learn the general for everyone, and then more and more particular, and did opt for the second method. In development of this plan, he, on the one hand, developed principles that should be followed when formulating definitions of certain groups of animals, listing their essential properties. On the other hand, he made a number of observations in search of the necessary connections between the individual properties of animals. For example, that all animals with bifurcated legs (artiodactyls) chew gum. In the work "On the generation of animals," Aristotle addressed questions about the reproduction and development of animals. In addition, he also owns a number of small zoological treatises. On the one hand, works on logic adjoin the zoological works of Aristotle, on the other, the treatise On the Soul. The descriptions of the structure and lifestyle of various animals in the works of Aristotle were sometimes very accurate, but many places subsequently suffered from errors in copying and translations in several languages. Among other things, he was the first to describe the so-called "Aristotelian lantern" - calcified armament of the mouth apparatus of sea ​​urchins [1] and live birth in sharks .

Theophrastus' book (370-280 BC) Research on plants developed Aristotle's ideas about the need to formulate definitions based on essential properties, but this time on plants.

Middle Ages

 
Frederick II (emperor of the Holy Roman Empire) . De arte venandi. , a famous medieval work on natural history, which described the morphology of birds

The decline of the Roman Empire was accompanied by the disappearance or degradation of previous knowledge, although doctors included many of the achievements of antiquity in their practice. The conquest of a significant part of the empire by the Arabs led to the fact that the works of Aristotle and other ancient authors were preserved in Arabic translation [2] .

Medieval Arab medicine , science and philosophy made an important contribution to the development of knowledge about life in the VIII-XIII centuries, during the so-called Golden Age of Islam , or the Islamic agrarian revolution . For example, in zoology, Al-Jahiz (781–869) already expressed ideas about evolution [3] [4] and food chains [5] . He was an early representative of geographical determinism , philosophical doctrine of the influence of natural conditions on the national character and development of nation states [6] . Iranian author Abu Hanifa ad-Dinawari (828–895) is considered the founder of Arab botany . In his β€œBook of Plants,” he described more than 637 plant species and discussed the phases of plant growth and development [7] . In anatomy and physiology, the Persian physician Ar-Razi (865–925) experimentally refuted Galen 's doctrine of the β€œ four vital juices ” [8] . The renowned physician Avicenna (980-1037) in his work β€œThe Canon of Medicine ”, until the 17th century the remaining reference book of European physicians [9] [10] , introduced the concept of clinical research and pharmacology [11] . The Spanish Arab Ibn Zuhr (1091-1161), by opening, proved that scabies is caused by a subcutaneous parasite [12] , and also introduced experimental surgery [13] and medical research on animals [14] . During the famine in Egypt in 1200, Abd al-Latif al-Baghdadi observed and studied the structure of human skeletons [15] .

Only a few European scientists gained fame in the Middle Ages. Among them, Hildegard of Bingen , Albert the Great and Frederick II (Holy Roman Emperor) made up the canon of natural history for early European universities , in which medicine was significantly inferior to the teaching of philosophy and theology [16] .

Rebirth

 
Comparison of the skeleton of a bird and a man from the book of Pierre Belon "L'Histoire de la nature des oyseaux" (1555)

Only the Renaissance truly revived in Europe an interest in natural history and physiology . In 1543, the development of modern anatomy , based on the autopsy of human bodies , began with the book by Vesalius β€œ De humani corporis fabrica ”. Vesalius and his followers gradually replaced medieval scholasticism in medicine and physiology with empiricism , relying not so much on the authority of textbooks and abstract thinking, but on personal experience. Through herbal medicine, medicine also fueled interest in the study of plants. Brunfels , Fuchs and other authors of early publications on wild plants laid the foundation for a full-scale description of plant life [17] . The medieval genre of literature, the bestiary , about animals and their habits, with the works of Konrad Gesner and other authors of the 16th century, turned into a truly scientific direction [18] .

Artists such as Albrecht Durer and Leonardo da Vinci often worked side by side with naturalists and were also interested in the structure of the human and animal bodies, giving detailed descriptions of their anatomy [19] . The traditions of alchemy , supported by scientists such as Paracelsus , have contributed to the study of nature, inspiring researchers to experiment with both mineral and biological sources of pharmacological drugs [20] . The development of pharmacology has also contributed to the emergence of mechanism [21] .

XVII century

The most important events of the 17th century are the formation of a methodological natural history that laid the foundations for the systematics of animals and plants; the development of anatomy and the opening of the second circle of blood circulation; the beginning of microscopic studies, the discovery of microorganisms and the first description of plant cells, sperm and red blood cells of animals.

The completion of the β€œherbalists” tradition dates back to the 17th century. The Swiss doctor and botanist Caspar Baugin in his work β€œ Pinax Theatri Botanici ” collected all the plant species known at that time (about 6000), specifying synonyms. This was the last summary of such a scale, in which the tricks of "popular taxonomy" were still used. Groups of plants in the work of Bohen did not have characteristics indicating their distinctive features. Plant names were formed, as before, without strict rules, sometimes by adding modifier words to the name given by ancient Greek or Roman authors, sometimes by romanizing indigenous plant names. Bohen was familiar with the book of Cesalpino , but did not see the point in the application of the method, considering the establishment of synonyms more important. At the same time, from the middle of the 17th century, more and more works appeared, written in the tradition of methodological natural history, based on the work of Cesalpino.

Significant changes are observed in the field of anatomy and physiology of animals and plants. The English doctor William Harvey (1578-1657), making experiments with blood circulation and dissecting animals, made a number of important discoveries. He discovered venous valves that obstructed the flow of blood in the opposite direction, showed isolation of the right and left ventricles of the heart and opened a small circle of blood circulation (a similar discovery was made shortly before Miguel Servet burned by Calvinists for his theological views). Jan Swammerdam (1637–1680) and Marcello Malpigi (1628–1694) described the internal structure of many invertebrate animals. Malpigi described the vessels of plants and experimentally showed the presence of an upward and downward current in different vessels.

 
The first image of plant cells on a cork slice in Robert Hook's Micrographia (1665)

The Italian naturalist Francesco Redi (1626–1698) experimentally proved the impossibility of spawning flies from rotten meat (by tightening part of the pots with rotten meat with muslin, he was able to prevent the laying of eggs by flies). The already mentioned William Harvey made a detailed description of the development of chicken and a number of other animals and suggested that they all develop from eggs in one way or another, although he could not directly observe the eggs.

Finally, in the 17th century a completely new field of research was formed, connected with the invention of the microscope. The tractography β€œ Micrography ” published by Robert Hooke (1635–1703), which is devoted to the description of microscopic observations of a number of objects of animate and inanimate nature (cork, flea, ant, salt crystals, etc.), as well as material culture (needle point, razor blade) , a point in the book, etc.), caused a wide public resonance. In addition to serving as a source of inspiration for Jonathan Swift in some fragments of Gulliver's Travels , he created a fashion for microscopic studies, including biological objects. One of the zealous lovers of microscopes was the Dutch artisan Anthony van Levenguk (1632-1723), who made observations using simple microscopes made by him and sent the results of observations for publication to the Royal Society of London . Levenguk managed to describe and sketch a number of microscopic creatures ( rotifers , ciliates , bacteria ), red blood cells, and human sperm.

18th century

 
The Kingdom Table of Animals from the First Edition of Systema Naturae by Karl Linnaeus (1735)

The parallel development of natural history on the one hand and anatomy and physiology on the other paved the way for the emergence of biology. In the field of natural history, the most significant events were the publication of the " Systems of Nature " by Karl Linney and the "General Natural History" by Georges Buffon .

The studies of Albrecht von Haller and Caspar Friedrich Wolf greatly expanded knowledge in the field of animal embryology and plant development. While Galler adhered to the concept of preformism , Wolf advocated the idea of epigenesis . Observations of the early development of the chicken allowed Wolf to show by the example of the formation of the tubular intestine from the initially flat rudiment that development cannot be reduced to purely quantitative growth without qualitative transformations.

The Emergence of Biology

The word "biology" from time to time appeared in the works of natural scientists until the 19th century, but its meaning was completely different at that time. Karl Linney , for example, called the "biologists" of the authors who composed the biographies of botanists. At the turn of the 18th and 19th centuries, three authors at once ( Burdakh , Treviranus , Lamarck ) used the word β€œbiology” in the modern sense to refer to the science of the general features of living bodies. Gottfried Reinhold Treviranus even put it in the title of the scientific work β€œBiologie; oder die Philosophie der lebenden Natur "(1802).

 
An outline of the family tree in Charles Darwin ’s First Notebook on Species Transmutation (1837)

The most significant events of the first half of the 19th century were the formation of paleontology and the biological foundations of stratigraphy, the emergence of cell theory, the formation of comparative anatomy and comparative embryology, the development of biogeography and the widespread dissemination of transformative ideas. The central events of the second half of the 19th century were the publication of the Origin of Species by Charles Darwin and the spread of the evolutionary approach in many biological disciplines (paleontology, systematics, comparative anatomy and comparative embryology), the formation of phylogenetics, the development of cytology and microscopic anatomy, experimental physiology and experimental embryology, the formation concepts of a specific causative agent of infectious diseases, proof of the impossibility of spontaneous generation of life in modern times environmental conditions.

Chemists of that time saw a fundamental difference between organic and inorganic substances, in particular, in processes such as fermentation and decay . Since the days of Aristotle, they have been considered specifically biological. However, Friedrich WΓΆhler and Justus Liebig , following the Lavoisier methodology, showed that the organic world even then could often be analyzed by physical and chemical methods. In 1828, WΓΆhler chemically, that is, without the use of organic substances and biological processes, synthesized the organic substance urea , thereby presenting the first evidence to refute vitalism . Then the catalytic effect of acellular extracts ( enzymes ) on chemical reactions was discovered, due to which, by the end of the 19th century. the modern concept of enzymes was formulated, although the mathematical theory of enzymatic kinetics appeared only at the beginning of the 20th century [22] .

Physiologists such as Claude Bernard , using vivisection and other experimental methods, studied the chemical and physical properties of a living body, laying the foundations of endocrinology , biomechanics , the teaching of nutrition and digestion . In the second half of the XIX century. the variety and significance of experimental research both in medicine and in biology has continuously increased. The main task was controlled changes in life processes, and the experiment was at the center of biological education [23] .

XX century

In the XX century, with the rediscovery of Mendel's laws , the rapid development of genetics begins. By the 1920s not only the chromosomal theory of heredity is being formed, but also the first works appear that set the task of integrating the new doctrine of heredity and the theory of evolution. After the Second World War , the development of molecular biology begins. In the second half of the 20th century, significant progress was made in the study of life phenomena at the cellular and molecular level.

Classical Genetics

 
Crossover schematic from T.H. Morgan

The year 1900 was marked by the β€œrediscovery” of Mendel’s laws . De Vries and other researchers independently came to understand the significance of Mendel’s work [24] . Soon after, cytologists came to the conclusion that the chromosomes are most likely to be the cell structures carrying the genetic material. In the years 1910-1915. Thomas Hunt Morgan and his team, working on the fruit fly Drosophila, developed the "Mendelian chromosome theory of heredity" [25] . Following Mendel’s example, they investigated the phenomenon of gene linkage from a quantitative point of view and postulated that genes are arranged linearly on the chromosomes, like beads on a string. They began to create gene maps of Drosophila genes, which became a widely used model organism, first for genetic and then molecular biological studies [26] .

De Frieze tried to combine the new genetic theory with the theory of evolution. He was the first to propose the term mutation for gene changes. In the 1920s – 1930s, population genetics appeared. In the works of Fisher , Haldane, and other authors, the theory of evolution, in the end, combined with classical genetics in the synthetic theory of evolution [27] .

In the second half of the 20th century, the ideas of population genetics had a significant impact on sociobiology and evolutionary psychology . In the 1960s, a mathematical theory of games appeared to explain altruism and its role in evolution through the selection of descendants. The synthetic theory of evolution was further developed, in which the concept of gene drift and other processes important for the emergence of highly developed organisms appeared [28] , which explained the reasons for the rapid evolutionary changes in the historically short time that previously formed the basis for the "theory of catastrophes" [29] . In 1980, Luis Alvarez proposed the meteorite hypothesis of the extinction of dinosaurs [30] . At the same time, in the early 1980s, other phenomena of mass extinction in the history of earthly life were statistically investigated [31] .

Biochemistry

By the end of the XIX century. The main pathways for the metabolism of drugs and poisons, protein, fatty acids, and urea synthesis were discovered [32] . At the beginning of the XX century. Vitamin research has begun. Improvement of laboratory work techniques, in particular, the invention of chromatography and electrophoresis stimulated the development of physiological chemistry, and biochemistry gradually separated from medicine into an independent discipline. In the 1920s and 1930s, Hans Krebs , Karl and Gerti Corey began to describe the main pathways of carbohydrate metabolism : the tricarboxylic acid cycle , glycolysis , gluconeogenesis . The study of the synthesis of steroids and porphyrins began . Between the 1930s and 1950s, Fritz Lipman and other authors described the role of adenosine triphosphate as a universal carrier of biochemical energy in the cell, as well as mitochondria as its main source of energy. These traditionally biochemical fields of research continue to develop so far [33] .

The origin of molecular biology

 
Wendell Meredith Stanley published this photograph of tobacco mosaic virus crystals in 1935. They are pure nucleoproteins , which convinced many biologists that heredity should have a physicochemical nature

In connection with the advent of classical genetics, many biologists, including those working in the field of physical and chemical biology, tried to establish the nature of the gene . For this purpose, the Rockefeller Foundation has established several grants, and in 1938 the head of the scientific department of the Foundation Warren Weaver used the term molecular biology to designate a task. He is considered the author of the name of this area of ​​biology [34] .

Как ΠΈ биохимия , смСТныС дисциплины бактСриология ΠΈ вирусология (ΠΏΠΎΠ·ΠΆΠ΅ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Ρ‘Π½Π½Ρ‹Π΅ Π² Π²ΠΈΠ΄Π΅ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ) Π² Ρ‚ΠΎ врСмя Π±ΡƒΡ€Π½ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»ΠΈΡΡŒ Π½Π° стыкС ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… СстСствСнных Π½Π°ΡƒΠΊ . ПослС выдСлСния Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΎΡ„Π°Π³Π° Π½Π°Ρ‡Π°Π»ΠΈΡΡŒ исслСдования вирусов Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ ΠΈ ΠΈΡ… хозяСв [35] . Π­Ρ‚ΠΎ создало Π±Π°Π·Ρƒ для примСнСния стандартизированных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ с гСнСтичСски ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π°Π²Π°Π»ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΎ воспроизводимыС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π·Π°Π»ΠΎΠΆΠΈΡ‚ΡŒ основы молСкулярной Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ .

ΠšΡ€ΠΎΠΌΠ΅ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ гСнСтичСских экспСримСнтов стали ΠΌΡƒΡˆΠΊΠ° Π΄Ρ€ΠΎΠ·ΠΎΡ„ΠΈΠ»Π°, ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Π° ΠΈ хлСбная плСсСнь, нСйроспора густая , Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ, Π° появлСниС элСктронного микроскопа ΠΈ высокоскоростных Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ„ΡƒΠ³ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠ΅Ρ€Π΅ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π΄Π°ΠΆΠ΅ само понятиС «Тизнь». ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΎ наслСдствСнности Ρƒ вирусов, воспроизвСдСниС внСядСрных Π½ΡƒΠΊΠ»Π΅ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… структур услоТнили Ρ€Π°Π½Π΅Π΅ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡƒΡŽ Ρ‚Π΅ΠΎΡ€ΠΈΡŽ мСндСлСвских хромосом [36] .

Π’ 1941 Π³ΠΎΠ΄Ρƒ Π‘ΠΈΠ΄Π» ΠΈ Π’Π΅ΠΉΡ‚Π΅ΠΌ сформулировали свою Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ Β«ΠΎΠ΄ΠΈΠ½ Π³Π΅Π½ β€” ΠΎΠ΄ΠΈΠ½ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Β». Π’ 1943 Π³ΠΎΠ΄Ρƒ Освальд Π­ΠΉΠ²Π΅Ρ€ΠΈ, продолТая Ρ€Π°Π±ΠΎΡ‚Ρƒ, Π½Π°Ρ‡Π°Ρ‚ΡƒΡŽ Π€Ρ€Π΅Π΄Π΅Ρ€ΠΈΠΊΠΎΠΌ Π“Ρ€ΠΈΡ„Ρ„ΠΈΡ‚ΠΎΠΌ , ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ гСнСтичСским ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ Π² хромосомах являСтся Π½Π΅ Π±Π΅Π»ΠΎΠΊ, ΠΊΠ°ΠΊ Π΄ΡƒΠΌΠ°Π»ΠΈ Ρ€Π°Π½Π΅Π΅, Π° Π”ΠΠš . Π’ 1952 Π³ΠΎΠ΄Ρƒ этот Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±Ρ‹Π» ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ Π² экспСримСнтС Π₯Π΅Ρ€ΡˆΠΈ β€” Π§Π΅ΠΉΠ· , ΠΈ это Π±Ρ‹Π» лишь ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ… Π²Π°ΠΆΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², достигнутых Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Ρ„Π°Π³ΠΎΠ²ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠΎΠΉ Π”Π΅Π»ΡŒΠ±Ρ€ΡŽΠΊΠ° . НаконСц, Π² 1953 Π³ΠΎΠ΄Ρƒ Уотсон ΠΈ ΠšΡ€ΠΈΠΊ , ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° Ρ€Π°Π±ΠΎΡ‚Π΅ ΠœΠΎΡ€ΠΈΡΠ° Уилкинса ΠΈ Π ΠΎΠ·Π°Π»ΠΈΠ½Π΄Ρ‹ Π€Ρ€Π°Π½ΠΊΠ»ΠΈΠ½ , ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ свою Π·Π½Π°ΠΌΠ΅Π½ΠΈΡ‚ΡƒΡŽ структуру Π”ΠΠš Π² Π²ΠΈΠ΄Π΅ Π΄Π²ΠΎΠΉΠ½ΠΎΠΉ спирали. Π’ своСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ Β« Molecular structure of Nucleic Acids Β» (Β«ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½Π°Ρ структура Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот») ΠΎΠ½ΠΈ заявили: Β«ΠžΡ‚ нашСго внимания Π½Π΅ ΡƒΠΊΡ€Ρ‹Π»ΠΎΡΡŒ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ спСцифичСскоС спариваниС, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΡ‹ постулировали, ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ позволяСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ΅ копирования гСнСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Β» [37] . Когда Ρ‡Π΅Ρ€Π΅Π· нСсколько Π»Π΅Ρ‚ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ полуконсСрвативной Ρ€Π΅ΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π±Ρ‹Π» ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ, Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Ρƒ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΎΠ² стало ясно, Ρ‡Ρ‚ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ оснований Π² Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²ΠΎΠΉ кислотС ΠΊΠ°ΠΊΠΈΠΌ-Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ опрСдСляСт ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ аминокислотных остатков Π² структурС Π±Π΅Π»ΠΊΠ°. Но идСю ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ гСнСтичСского ΠΊΠΎΠ΄Π° сформулировал Π½Π΅ Π±ΠΈΠΎΠ»ΠΎΠ³, Π° Ρ„ΠΈΠ·ΠΈΠΊ Π“Π΅ΠΎΡ€Π³ΠΈΠΉ Π“Π°ΠΌΠΎΠ² .

Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π±ΠΈΠΎΡ…ΠΈΠΌΠΈΠΈ ΠΈ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ XX Π²Π΅ΠΊΠ°

Π Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²ΠΊΠ° гСнСтичСского ΠΊΠΎΠ΄Π° заняла нСсколько Π»Π΅Ρ‚. Π­Ρ‚Π° Ρ€Π°Π±ΠΎΡ‚Π° Π±Ρ‹Π»Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° Π³Π»Π°Π²Π½Ρ‹ΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ НирСнбСргом ΠΈ ΠšΠΎΡ€Π°Π½ΠΎΠΉ ΠΈ Π·Π°ΠΊΠΎΠ½Ρ‡Π΅Π½Π° ΠΊ ΠΊΠΎΠ½Ρ†Ρƒ 1960-Ρ… Π³ΠΎΠ΄ΠΎΠ² [38] . Π’ΠΎΠ³Π΄Π° ΠΆΠ΅ ΠŸΠ΅Ρ€ΡƒΡ† ΠΈ ΠšΠ΅Π½Π΄Ρ€ΡŽ ΠΈΠ· ΠšΠ΅ΠΌΠ±Ρ€ΠΈΠ΄ΠΆΠ° [39] Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ рСнтгСноструктурный Π°Π½Π°Π»ΠΈΠ· Π² сочСтании с Π½ΠΎΠ²Ρ‹ΠΌΠΈ возмоТностями Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ для исслСдования пространствСнной структуры Π±Π΅Π»ΠΊΠΎΠ² [40] . Π–Π°ΠΊΠΎΠ± ΠΈ Моно ΠΈΠ· Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° ΠŸΠ°ΡΡ‚Π΅Ρ€Π° исслСдовали строСниС lac ΠΎΠΏΠ΅Ρ€ΠΎΠ½Π° ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Π»ΠΈ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ рСгуляции Π³Π΅Π½ΠΎΠ² . К сСрСдинС 1960-Ρ… Π³ΠΎΠ΄ΠΎΠ² основы молСкулярной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΈ наслСдствСнности Π±Ρ‹Π»ΠΈ установлСны, хотя Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ описаниС всСх ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΎΡΡŒ [41] [42] . ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ быстро Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΠ»ΠΈΡΡŒ Π² Π΄Ρ€ΡƒΠ³ΠΈΠ΅ дисциплины, Ρ€Π°ΡΡˆΠΈΡ€ΡΡ возмоТности исслСдований Π½Π° молСкулярном ΡƒΡ€ΠΎΠ²Π½Π΅ [43] . ОсобСнно это Π±Ρ‹Π»ΠΎ Π²Π°ΠΆΠ½ΠΎ для Π³Π΅Π½Π΅Ρ‚ΠΈΠΊΠΈ , ΠΈΠΌΠΌΡƒΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ , эмбриологии ΠΈ Π½Π΅ΠΉΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ , Π° ΠΈΠ΄Π΅ΠΈ ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠΈ «гСнСтичСской ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹Β» (этот Ρ‚Π΅Ρ€ΠΌΠΈΠ½ Π±Ρ‹Π» ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π–Π°ΠΊΠΎΠ±ΠΎΠΌ ΠΈ Моно ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠΉ ) ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ»ΠΈ ΠΈ Π²ΠΎ всС ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ биологичСскиС дисциплины [44] .

 
ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π³Π΅Π½Π½ΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π»ΠΈΠ½ΠΈΠΈ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Escherichia coli β€” ваТнСйший инструмСнт соврСмСнной Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… областСй Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ

Π’ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² связи с достиТСниями молСкулярной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ появилась тСория клональной сСлСкции, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»ΠΈ Π•Ρ€Π½Π΅ ΠΈ Π‘Ρ‘Ρ€Π½Π΅Ρ‚ [45] . Π’ Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ появлСниС Π³Π΅Π½Π½ΠΎΠΉ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ , начиная с 1970-Ρ… Π³ΠΎΠ΄ΠΎΠ², ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ появлСнию ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ спСктра ΠΏΡ€ΠΎΠ΄ΡƒΡ†Π΅Π½Ρ‚ΠΎΠ² Π½ΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ², Π² частности, лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ², Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Ρ‚Ρ€Π΅ΠΎΠ½ΠΈΠ½ ΠΈ инсулин .

ГСнСтичСская инТСнСрия основана ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… Π”ΠΠš , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΡ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π”ΠΠš, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ искусствСнно пСрСстроСны Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ ΠΏΡƒΡ‚Ρ‘ΠΌ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΈΡ… ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… частСй ( Π³Π΅Π½ΠΎΠ² ΠΈ ΠΈΡ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ²). Для разрСзания Π”ΠΠš ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹ рСстриктазы , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ Π² ΠΊΠΎΠ½Ρ†Π΅ 1960-Ρ… Π³ΠΎΠ΄ΠΎΠ². БшиваниС кусков Π”ΠΠš ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Π΄Ρ€ΡƒΠ³ΠΎΠΉ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚, Π»ΠΈΠ³Π°Π·Π° . Π’Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈ ввСсти Π² Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Π”ΠΠš, ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΡƒΡŽ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π³Π΅Π½ рСзистСнтности ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌΡƒ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊΡƒ. Если бактСрия, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ² Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½ΡƒΡŽ Π”ΠΠš, ΠΏΠ΅Ρ€Π΅ΠΆΠΈΠ²Π΅Ρ‚ Ρ‚Ρ€Π°Π½ΡΡ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ , ΠΎΠ½Π° Π½Π°Ρ‡Π½Π΅Ρ‚ Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ°Ρ‚ΡŒΡΡ Π½Π° срСдС, содСрТащСй Π΄Π°Π½Π½Ρ‹ΠΉ Π°Π½Ρ‚ΠΈΠ±ΠΈΠΎΡ‚ΠΈΠΊ, ΠΈ это Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ ΠΏΠΎ появлСнию ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΉ трансгСнного ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° [46] .

ΠŸΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ Π²ΠΎ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½ΠΎΠ²Ρ‹Π΅ возмоТности, Π½ΠΎ ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ΡƒΠ³Ρ€ΠΎΠ·Ρƒ ΠΎΡ‚ примСнСния Ρ‚Π°ΠΊΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ (Π² частности, ΠΎΡ‚ манипуляций с ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ, способными ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΠΈΡ‚ΡŒ Π³Π΅Π½Ρ‹ вирусного Ρ€Π°ΠΊΠ°) Π½Π°ΡƒΡ‡Π½ΠΎΠ΅ сообщСство Π²Π²Π΅Π»ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΉ Π½Π° Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹ΠΌΠΈ Π”ΠΠš Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° Π² 1975 Π³ΠΎΠ΄Ρƒ Π½Π° ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ Π½Π΅ Π±Ρ‹Π»ΠΈ Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΈ ΠΏΠΎ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ бСзопасности ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ Ρ€ΠΎΠ΄Π° Ρ€Π°Π±ΠΎΡ‚Π°Ρ… [47] . ПослС этого наступил ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π±ΡƒΡ€Π½ΠΎΠ³ΠΎ развития Π½ΠΎΠ²Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ.

 
Π¨Ρ‚Π°Ρ‚ΠΈΠ² Π°ΠΌΠΏΠ»ΠΈΡ„ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π° β€” устройства, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½ΡƒΡŽ Ρ†Π΅ΠΏΠ½ΡƒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Π² 48 ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ…

К ΠΊΠΎΠ½Ρ†Ρƒ 1970-Ρ… Π³ΠΎΠ΄ΠΎΠ² появились ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ опрСдСлСния ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½ΠΎΠΉ структуры Π”ΠΠš , химичСского синтСза ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π”ΠΠš (ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ²), ввСдСния Π”ΠΠš Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… ( трансфСкция ) [48] . Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ с Π³Π΅Π½Π°ΠΌΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π±Ρ‹Π»ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ с различиями Π² устройствС Π³Π΅Π½ΠΎΠ² ΠΏΡ€ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ‚ ΠΈ эукариот . Π­Ρ‚Π° Π·Π°Π΄Π°Ρ‡Π° Π±Ρ‹Π»Π° Π² Ρ†Π΅Π»ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½Π° благодаря ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΈΡŽ сплайсинга [49] .

К 1980-ΠΌ Π³ΠΎΠ΄Π°ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ Π±Π΅Π»ΠΊΠΎΠ² ΠΈ Π½ΡƒΠΊΠ»Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… кислот ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΠΊΠ°ΠΊ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ для систСматики ΠΈ особСнно кладистики ; Ρ‚Π°ΠΊ появилась молСкулярная Ρ„ΠΈΠ»ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΠΊΠ° . К 1990 Π³ Π½Π° основании ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½Ρ‹Ρ… ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ 16S Ρ€Π ΠΠš ΠšΠ°Ρ€Π» Π’Ρ‘Π·Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ» Π½ΠΎΠ²ΡƒΡŽ систСму ΠΆΠΈΠ²Ρ‹Ρ… сущСств: царство ΠΌΠΎΠ½Π΅Ρ€ Π±Ρ‹Π»ΠΎ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΎ Π½Π° Π΄Π²Π° Π΄ΠΎΠΌΠ΅Π½Π° эубактСрий ΠΈ Π°Ρ€Ρ…Π΅ΠΉ , Π° ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ царства (протист, Π³Ρ€ΠΈΠ±ΠΎΠ², растСний ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…) β€” ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½Π΅Π½Ρ‹ Π² ΠΎΠ΄ΠΈΠ½ Π΄ΠΎΠΌΠ΅Π½ эукариот [50] .

ПоявлСниС Π² 1980-Ρ… Π³ΠΎΠ΄Π°Ρ… Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ПЦР Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ упростило Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΡƒΡŽ Ρ€Π°Π±ΠΎΡ‚Ρƒ с Π”ΠΠš ΠΈ ΠΎΡ‚ΠΊΡ€Ρ‹Π»ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для открытия Π½ΠΎΠ²Ρ‹Ρ… Ρ€Π°Π½Π΅Π΅ нСизвСстных Π³Π΅Π½ΠΎΠ², Π½ΠΎ ΠΈ для опрСдСлСния всСй Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ†Π΅Π»Ρ‹Ρ… Π³Π΅Π½ΠΎΠΌΠΎΠ² , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ для ΠΈΡΡ‡Π΅Ρ€ΠΏΡ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ описания структуры всСх Π³Π΅Π½ΠΎΠ² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° [51] . Π’ 1990-Ρ… Π³ΠΎΠ΄Π°Ρ… эта Π·Π°Π΄Π°Ρ‡Π° Π±Ρ‹Π»Π° Π² Ρ†Π΅Π»ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½Π° Π² Ρ…ΠΎΠ΄Π΅ выполнСния ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Β« Π“Π΅Π½ΠΎΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Β» [52] .

XXI Π²Π΅ΠΊ ΠΈ Π½ΠΎΠ²Ρ‹Π΅ Ρ€ΡƒΠ±Π΅ΠΆΠΈ

По мнСнию ΠšΠ°Ρ€Π»Π° Π’Ρ‘Π·Π΅ (ΡˆΠΈΡ€Π΅ β€” ΠΏΠΎ мнСнию Π’Ρ‘Π·Π΅ ΠΈ Π“ΠΎΠ»Π΄Π΅Π½Ρ„Π΅Π»ΡŒΠ΄Π°), биология XXI Π²Π΅ΠΊΠ° β€” это Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Π½Π°ΡƒΠΊΠ°, основанная Π½Π° ΡΠ²ΠΎΠ»ΡŽΡ†ΠΈΠΎΠ½Π½Ρ‹Ρ… взглядах, подходящая ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΆΠΈΠ·Π½ΠΈ Π½Π΅ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Ρ€Π΅Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½ΠΈΠ·ΠΌΠ° , ΠΊΠ°ΠΊ Π² XX Π²Π΅ΠΊΠ΅ , Π° ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Ρ…ΠΎΠ»ΠΈΠ·ΠΌΠ° [53] [54] . ПослС Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° Β« Π“Π΅Π½ΠΎΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Β» Π±Ρ‹Π»ΠΎ Π½Π°Ρ‡Π°Ρ‚ΠΎ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ мноТСство ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠ²: ENCODE , 1000 Π³Π΅Π½ΠΎΠΌΠΎΠ² , Β« ΠŸΡ€ΠΎΡ‚Π΅ΠΎΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Β», FANTOM [55] β€” связанных с систСмной Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ , Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚Π°ΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Ρ‹ ΠΊΠ°ΠΊ OpenWorm , Human Brain Project , ΠΈ Ρ‚. Π΄.

Одной ΠΈΠ· ΠΎΡ‚Π»ΠΈΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ‡Π΅Ρ€Ρ‚ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ XXI Π²Π΅ΠΊΠ° являСтся граТданская Π½Π°ΡƒΠΊΠ° , Ρ€Π°Π½Π΅Π΅ ΠΊΡƒΠ΄Π° ΠΌΠ΅Π½Π΅Π΅ развитая. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Ρ‹ ΠΊΠ°ΠΊ EyeWire ΠΈ Foldit .

Π˜ΡΡ‚ΠΎΡ€ΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ

По мнСнию историка Π½Π°ΡƒΠΊΠΈ Π”Π°Π½ΠΈΠΈΠ»Π° Π›Π΅Π±Π΅Π΄Π΅Π²Π° , ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ источников Π·Π½Π°Π½ΠΈΠΉ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π°Π·Π΄Π΅Π»Π°Ρ… историчСской Π½Π°ΡƒΠΊΠΈ сильно отличаСтся, Π½ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ развития историографии эта дисциплина Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ ΠΎΠ΄Π½ΠΎ ΠΈΠ· послСдних мСст [56] .

Notes

  1. ↑ Π¨ΠΈΠΌΠΊΠ΅Π²ΠΈΡ‡ Π’. М. АристотСлСв Ρ„ΠΎΠ½Π°Ρ€ΡŒ // ЭнциклопСдичСский ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ Π‘Ρ€ΠΎΠΊΠ³Π°ΡƒΠ·Π° ΠΈ Π•Ρ„Ρ€ΠΎΠ½Π° : Π² 86 Ρ‚. (82 Ρ‚. ΠΈ 4 Π΄ΠΎΠΏ.). - SPb. , 1890-1907.
  2. ↑ Mayr, The Growth of Biological Thought , pp 91-94
  3. ↑ Mehmet Bayrakdar, Β«Al-Jahiz And the Rise of Biological EvolutionismΒ», The Islamic Quarterly , Third Quarter, 1983, London .
  4. ↑ Conway Zirkle (1941), Natural Selection before the Β«Origin of SpeciesΒ», Proceedings of the American Philosophical Society 84 (1): 71-123.
  5. ↑ Frank N. Egerton, Β«A History of the Ecological Sciences, Part 6: Arabic Language Science β€” Origins and ZoologicalΒ», Bulletin of the Ecological Society of America , April 2002: 142β€”146 [143]
  6. ↑ Lawrence I. Conrad (1982), Β«Taun and Waba: Conceptions of Plague and Pestilence in Early IslamΒ», Journal of the Economic and Social History of the Orient 25 (3), pp. 268β€”307 [278].
  7. ↑ Fahd, Toufic, "Botany and agriculture", с. 815   , in Morelon, RΓ©gis & Roshdi Rashed (1996), Encyclopedia of the History of Arabic Science , vol. 3, Routledge , ISBN 0415124107
  8. ↑ G. Stolyarov II (2002), Β«Rhazes: The Thinking Western PhysicianΒ», The Rational Argumentator , Issue VI.
  9. ↑ The Canon of Medicine (work by Avicenna) , EncyclopΓ¦dia Britannica
  10. ↑ Amber Haque (2004), Β«Psychology from Islamic Perspective: Contributions of Early Muslim Scholars and Challenges to Contemporary Muslim PsychologistsΒ», Journal of Religion and Health 43 (4), p. 357β€”377 [375].
  11. ↑ D. Craig Brater and Walter J. Daly (2000), Β«Clinical pharmacology in the Middle Ages: Principles that presage the 21st centuryΒ», Clinical Pharmacology & Therapeutics 67 (5), p. 447β€”450 [449].
  12. ↑ Islamic medicine , Hutchinson Encyclopedia .
  13. ↑ Rabie E. Abdel-Halim (2006), Β«Contributions of Muhadhdhab Al-Deen Al-Baghdadi to the progress of medicine and urologyΒ», Saudi Medical Journal 27 (11): 1631β€”1641.
  14. ↑ Rabie E. Abdel-Halim (2005), Β«Contributions of Ibn Zuhr (Avenzoar) to the progress of surgery: A study and translations from his book Al-TaisirΒ», Saudi Medical Journal 2005; Vol. 26 (9): 1333β€”1339 .
  15. ↑ Emilie Savage-Smith (1996), Β«MedicineΒ», in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science , Vol. 3, p. 903β€”962 [951-952]. Routledge , London and New York.
  16. ↑ Mayr, The Growth of Biological Thought , pp 91-94:
     "Если ΠΈΠΌΠ΅Ρ‚ΡŒ Π² Π²ΠΈΠ΄Ρƒ биологию Π² Ρ†Π΅Π»ΠΎΠΌ, Π΄ΠΎ ΠΊΠΎΠ½Ρ†Π° XVIII - Π½Π°Ρ‡Π°Π»Π° XIX Π²Π΅ΠΊΠ° унивСрситСты Π½Π΅ Π±Ρ‹Π»ΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ биологичСских исслСдований." 
  17. ↑ Mayr, The Growth of Biological Thought , pp 94-95, 154β€”158
  18. ↑ Mayr, The Growth of Biological Thought , pp 166β€”171
  19. ↑ Magner, A History of the Life Sciences , pp 80-83
  20. ↑ Magner, A History of the Life Sciences , pp 90-97
  21. ↑ Merchant, The Death of Nature , chapters 1, 4, and 8
  22. ↑ Fruton, Proteins, Enzymes, Genes , chapter 4; Coleman, Biology in the Nineteenth Century , chapter 6
  23. ↑ Rothman and Rothman, The Pursuit of Perfection , chapter 1; Coleman, Biology in the Nineteenth Century , chapter 7
  24. ↑ Randy Moore, Β« The 'Rediscovery' of Mendel's Work Β», Bioscene , Volume 27(2), May 2001.
  25. ↑ TH Morgan, AH Sturtevant, HJ Muller, CB Bridges (1915) The Mechanism of Mendelian Heredity Henry Holt and Company.
  26. ↑ Garland Allen, Thomas Hunt Morgan: The Man and His Science (1978), chapter 5; see also: Kohler, Lords of the Fly and Sturtevant, A History of Genetics
  27. ↑ Smocovitis, Unifying Biology , chapter 5; see also: Mayr and Provine (eds.), The Evolutionary Synthesis
  28. ↑ Gould, The Structure of Evolutionary Theory , chapter 8; Larson, Evolution , chapter 12
  29. ↑ Larson, Evolution , pp 271β€”283
  30. ↑ Zimmer, Evolution , pp 188β€”195
  31. ↑ Zimmer, Evolution , pp 169β€”172
  32. ↑ Caldwell, Β«Drug metabolism and pharmacogeneticsΒ»; Fruton, Proteins, Enzymes, Genes , chapter 7
  33. ↑ Fruton, Proteins, Enzymes, Genes , chapters 6 and 7
  34. ↑ Morange, A History of Molecular Biology , chapter 8; Kay, The Molecular Vision of Life , Introduction, Interlude I, and Interlude II
  35. ↑ See: Summers, FΓ©lix d'Herelle and the Origins of Molecular Biology
  36. ↑ Creager, The Life of a Virus , chapters 3 and 6; Morange, A History of Molecular Biology , chapter 2
  37. ↑ Watson, James D. and Francis Crick. Β« Molecular structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid Β», Nature , vol. 171, , no. 4356, pp 737β€”738
  38. ↑ Morange, A History of Molecular Biology , chapters 3, 4, 11, and 12; Fruton, Proteins, Enzymes, Genes , chapter 8; on the Meselson-Stahl experiment, see: Holmes, Meselson, Stahl, and the Replication of DNA
  39. ↑ On the Cambridge lab, see de Chadarevian, Designs for Life ; on comparisons with the Pasteur Institute, see Creager, Β«Building Biology across the AtlanticΒ»
  40. ↑ de Chadarevian, Designs for Life , chapters 4 and 7
  41. ↑ Pardee A. PaJaMas in Paris (Π°Π½Π³Π».) // Trends Genet. : journal. - 2002. - Vol. 18 , no. 11 . β€” P. 585β€”587 . β€” DOI : 10.1016/S0168-9525(02)02780-4 . β€” PMID 12414189 .
  42. ↑ Morange, A History of Molecular Biology , chapter 14
  43. ↑ Wilson, Naturalist , chapter 12; Morange, A History of Molecular Biology, chapter 15
  44. ↑ Morange, A History of Molecular Biology , chapter 15; Keller, The Century of the Gene , chapter 5
  45. ↑ Morange, A History of Molecular Biology, pp 126β€”132, 213β€”214
  46. ↑ Morange, A History of Molecular Biology , chapters 15 and 16
  47. ↑ Bud, The Uses of Life , chapter 8; Gottweis, Governing Molecules , chapter 3; Morange, A History of Molecular Biology , chapter 16
  48. ↑ Morange, A History of Molecular Biology , chapter 16
  49. ↑ Morange, A History of Molecular Biology , chapter 17
  50. ↑ Sapp, Genesis , chapters 18 and 19
  51. ↑ Morange, A History of Molecular Biology , chapter 20; see also: Rabinow, Making PCR
  52. ↑ Davies, Cracking the Genome , Introduction; see also: Sulston, The Common Thread
  53. ↑ Woese CR A new biology for a new century //Microbiology and Molecular Biology Reviews. β€” 2004. β€” Π’. 68. β€” β„–. 2. β€” Π‘. 173β€”186.
  54. ↑ [Woese CR, Goldenfeld N. How the microbial world saved evolution from the scylla of molecular biology and the charybdis of the modern synthesis //Microbiology and Molecular Biology Reviews. β€” 2009. β€” Π’. 73. β€” β„–. 1. β€” Π‘. 14-21.]
  55. ↑ [Π‘Π°ΠΉΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚Π° FANTOM]
  56. ↑ Π›Π΅Π±Π΅Π΄Π΅Π² Π”. Π’. ΠžΡ‡Π΅Ρ€ΠΊΠΈ ΠΏΠΎ ботаничСской историографии (XIX β€” Π½Π°Ρ‡Π°Π»ΠΎ XX Π².) : [ Π°Ρ€Ρ…. 15 ΠΌΠ°Ρ€Ρ‚Π° 2016 ] / ΠžΡ‚Π². ed. М. Π­. ΠšΠΈΡ€ΠΏΠΈΡ‡Π½ΠΈΠΊΠΎΠ² . β€” Π›. : Наука, 1986. β€” Π‘. 3. β€” 165 с. β€” 1600 экз.

Literature

  • Π‘Π°Π±ΠΈΠΉ Π’. П., ΠšΠΎΡ…Π°Π½ΠΎΠ²Π° Π›. Π›., ΠšΠΎΡΡ‚ΡŽΠΊ Π“. Π“. ΠΈ Π΄Ρ€. Π‘ΠΈΠΎΠ»ΠΎΠ³ΠΈ: БиографичСский справочник. β€” КиСв, 1984.
  • Π˜ΡΡ‚ΠΎΡ€ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ с Π΄Ρ€Π΅Π²Π½Π΅ΠΉΡˆΠΈΡ… Π²Ρ€Π΅ΠΌΠ΅Π½ Π΄ΠΎ Π½Π°ΡˆΠΈΡ… Π΄Π½Π΅ΠΉ. Ρ‚. 1-2. М., 1972β€”1975.
  • ΠœΠΈΡ€Π·ΠΎΡΠ½ Π­. Н. Π­Ρ‚ΡŽΠ΄Ρ‹ ΠΏΠΎ истории тСорСтичСской Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. 2-Π΅ ΠΈΠ·Π΄., Ρ€Π°ΡΡˆ. β€” М., 2006. β€” 371 с. ISBN 5-02-033737-4 .

Links

  • International Society for History, Philosophy, and Social Studies of Biology β€” сайт общСства истории, философии ΠΈ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… исслСдований Π² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ
  • Π˜ΡΡ‚ΠΎΡ€ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Historyworld.net
  • Π˜ΡΡ‚ΠΎΡ€ΠΈΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Bioexplorer.Net β€” коллСкция ссылок ΠΏΠΎ истории Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ
Source - https://ru.wikipedia.org/w/index.php?title= Biology History&oldid= 101045635


More articles:

  • Vietsovpetro
  • 1984 World Snooker Championship
  • Purepecha (people)
  • Spartel
  • Magellan Navigation
  • 2nd Krestovsky Lane
  • Polka Sakkiyarvi
  • Ecology History
  • Pyshka (film)
  • SchrΓΆder, Greta

All articles

Clever Geek | 2019