Clever Geek Handbook
📜 ⬆️ ⬇️

Structure (differential geometry)

In differential geometry, a structure on a manifold , a geometric quantity, or a field of geometric objects is the section of the bundle associated with the main bundle of corepers of a varietyM {\ displaystyle M} M . Intuitively, a geometric quantity can be considered as a quantity whose value depends not only on the pointx {\ displaystyle x} x varietyM {\ displaystyle M} M , but also from the choice of core, that is, from the choice of the infinitesimal coordinate system at the pointx {\ displaystyle x} x (see also Map ).

Formal definition of a structure on a variety

To formally define structures on a manifold, we considerGLk(n) {\ displaystyle GL ^ {k} (n)}   Is a general differential group of orderk {\ displaystyle k}   (groupk {\ displaystyle k}   -jet at zero space transformationsRn {\ displaystyle \ mathbb {R} ^ {n}}   preserving the origin)Mk {\ displaystyle M_ {k}}   - variety of order corersk {\ displaystyle k}  n {\ displaystyle n}   -dimensional diversityM {\ displaystyle M}   (i.e. varietyk {\ displaystyle k}   -jetjxk(u) {\ displaystyle j_ {x} ^ {k} (u)}   local cardsu:M⊃U→Rn {\ displaystyle u: M \ supset U \ to \ mathbb {R} ^ {n}}   starting at pointx=u-one(0) {\ displaystyle x = u ^ {- 1} (0)}   )

GroupGLk(n) {\ displaystyle GL ^ {k} (n)}   acts on the left on the manifoldMk {\ displaystyle M_ {k}}   according to the formula

j0k(φ)j0k(u)=jxk(φ∘u),j0k(φ)∈GLk(n),jxk(u)∈Mk.{\ displaystyle j_ {0} ^ {k} (\ varphi) j_ {0} ^ {k} (u) = j_ {x} ^ {k} (\ varphi \ circ u), \ quad j_ {0} ^ {k} (\ varphi) \ in GL ^ {k} (n), \ quad j_ {x} ^ {k} (u) \ in M_ {k}.}  

This action definesMk {\ displaystyle M_ {k}}   structure of the mainGLk(n) {\ displaystyle GL ^ {k} (n)}   -bundlesπk:Mk→M {\ displaystyle \ pi _ {k}: M_ {k} \ to M}   called a bundle of order corersk {\ displaystyle k}   .

Let nowW {\ displaystyle W}   - arbitraryGLk(n) {\ displaystyle GL ^ {k} (n)}   -manifold, i.e., a manifold with a left action of a groupGLk(n) {\ displaystyle GL ^ {k} (n)}   , aW(M) {\ displaystyle W (M)}   - space of orbits of the left action of the groupGLk(n) {\ displaystyle GL ^ {k} (n)}   atMk×W {\ displaystyle M_ {k} \ times W}   . BundleπW:W(M)→M {\ displaystyle \ pi _ {W}: W (M) \ to M}   , which is the natural projection of the orbit space ontoM {\ displaystyle M}   and associated withW {\ displaystyle W}   so withMk {\ displaystyle M_ {k}}   is called a bundle of geometric structures of typeW {\ displaystyle W}   order no morek {\ displaystyle k}   , and its sections with structures of the typeW {\ displaystyle W}   . Structures of this type are in natural one-to-one correspondence withGLk(n) {\ displaystyle GL ^ {k} (n)}   -quasivariant mappingsS:Mk→W {\ displaystyle S: M_ {k} \ to W}   .

So structures likeW {\ displaystyle W}   can be seen asW {\ displaystyle W}   -value functionS {\ displaystyle S}   on varietyMk {\ displaystyle M_ {k}}  k {\ displaystyle k}   -reper satisfying the following condition of equivariance:

S(guk)=gS(uk),g∈GLk(n),uk∈Mk.{\ displaystyle S (gu ^ {k}) = gS (u ^ {k}), \ quad g \ in GL ^ {k} (n), \ quad u ^ {k} \ in M_ {k}.}  

The bundle of geometric objects is a natural bundle in the sense that the group of diffeomorphisms of a manifoldM {\ displaystyle M}   acts as a group of automorphismsπW {\ displaystyle \ pi _ {W}}   .

If aW {\ displaystyle W}   is a vector space with linear (respectively, affine) action of the groupGLk(n) {\ displaystyle GL ^ {k} (n)}   , then structures likeW {\ displaystyle W}   are called linear (respectively, affine ).

The main examples of linear structures of the first order are tensor structures , or tensor fields . Let beV=Rn {\ displaystyle V = \ mathbb {R} ^ {n}}   ,V∗=Hom(V,R) {\ displaystyle V ^ {*} = \ mathrm {Hom} \, (V, \; \ mathbb {R})}   andVgp=((⊗pV))⊗((⊗qV∗)) {\ displaystyle V_ {g} ^ {p} = ((\ otimes ^ {p} V)) \ otimes ((\ otimes ^ {q} V ^ {*}))}   Is the space of tensors of type(p,q) {\ displaystyle (p, \; q)}   with the natural tensor representation of the groupGLone(n)=GL(n) {\ displaystyle GL ^ {1} (n) = GL (n)}   . Type structureVqp {\ displaystyle V_ {q} ^ {p}}   called a tensor field of type(p,q) {\ displaystyle (p, \; q)}   . It can be considered as a vector function on the variety of corepersMone {\ displaystyle M_ {1}}   matching coreperθ=joneone(u)=(duone,du2,...,dun) {\ displaystyle \ theta = j_ {1} ^ {1} (u) = (du ^ {1}, \; du ^ {2}, \; \ ldots, \; du ^ {n})}   set of coordinatesS(θ)jonej2...jqionei2...ip {\ displaystyle S (\ theta) _ {j_ {1} j_ {2} \ ldots j_ {q}} ^ {i_ {1} i_ {2} \ ldots i_ {p}}}   tensorS(θ)∈Vqp {\ displaystyle S (\ theta) \ in V_ {q} ^ {p}}   relative to the standard basis

{eione⊗ei2⊗...⊗eip⊗e∗jone⊗e∗j2⊗...⊗e∗jq}{\ displaystyle \ {e_ {i_ {1}} \ otimes e_ {i_ {2}} \ otimes \ ldots \ otimes e_ {i_ {p}} \ otimes e ^ {* j_ {1}} \ otimes e ^ { * j_ {2}} \ otimes \ ldots \ otimes e ^ {* j_ {q}} \}}  

of spaceVqp {\ displaystyle V_ {q} ^ {p}}   . With linear conversion of the coronerθ→gθ=(gaidua) {\ displaystyle \ theta \ to g \ theta = (g_ {a} ^ {i} \, du ^ {a})}   coordinatesSjonej2...jpionei2...ip {\ displaystyle S_ {j_ {1} j_ {2} \ ldots j_ {p}} ^ {i_ {1} i_ {2} \ ldots i_ {p}}}   are transformed according to the tensor representation:

Sjonej2...jqionei2...ip(qθ)=gaoneionega2i2...gapip(g-one)jonebone(g-one)j2b2...(g-one)jqbqS(θ)boneb2...bqaonea2...ap.{\ displaystyle S_ {j_ {1} j_ {2} \ ldots j_ {q}} ^ {i_ {1} i_ {2} \ ldots i_ {p}} (q \ theta) = g_ {a_ {1}} ^ {i_ {1}} g_ {a_ {2}} ^ {i_ {2}} \ ldots g_ {a_ {p}} ^ {i_ {p}} (g ^ {- 1}) _ {j_ {1 }} ^ {b_ {1}} (g ^ {- 1}) _ {j_ {2}} ^ {b_ {2}} \ ldots (g ^ {- 1}) _ {j_ {q}} ^ { b_ {q}} S (\ theta) _ {b_ {1} b_ {2} \ ldots b_ {q}} ^ {a_ {1} a_ {2} \ ldots a_ {p}}.}  

The most important examples of tensor structures are:

  • vector field ;
  • differential form ;
  • metric tensor ;
  • symplectic structure ;
  • complex structure ;
  • affinor .

All linear structures (of any orders) are exhausted by Rashevsky supertensors [1] .

An example of a second-order affine structure is the torsion-free affine connection , which can be considered as a structure of the typeV(2)one {\ displaystyle V _ {(2)} ^ {1}}   whereV(2)one≈V⊗S2V∗ {\ displaystyle V _ {(2)} ^ {1} \ approx V \ otimes S ^ {2} V ^ {*}}   - the core of natural homomorphismGL2(n)→GLone(n) {\ displaystyle GL ^ {2} (n) \ to GL ^ {1} (n)}   , which can be considered as a vector space with the natural action of the groupGL2(n)=GL(n)V(2)one {\ displaystyle GL ^ {2} (n) = GL (n) V _ {(2)} ^ {1}}   .

Another important and fairly broad class of structures is the class of infinitesimal homogeneous structures , orG {\ displaystyle G}   structures. They can be defined as structures of typeW {\ displaystyle W}   whereW=GLk(n)/G {\ displaystyle W = GL ^ {k} (n) / G}   - homogeneous group spaceGLk(n) {\ displaystyle GL ^ {k} (n)}   .

For further generalization, we can consider generalG {\ displaystyle G}   -structures are principal bundles that are homomorphically mapped ontoG {\ displaystyle G}   -structure, and sections of bundles associated with them. In this case, one can consider a number of important general geometric structures, such as spinor structures , symplectic spinor structures , etc.

Literature

  1. Bourbaki, N. Set Theory / Transl. with french - M .: Mir, 1965 .-- 457 p.
  2. Veblen, O., Whitehead, J. Foundations of differential geometry . - M .: IIL, 1949 .-- 230 p.
  3. Sternberg, S. Lectures on differential geometry . - M .: Mir, 1970 .-- 413 p.
  4. Vasiliev, A. M. Theory of differential geometric structures . - M .: Moscow State University, 1987 .-- 190 p.
  5. Laptev G.F. Basic infinitesimal structures of higher orders on a smooth manifold // Transactions of a Geometric Seminar. - v. 1. - M .: VINITI , 1966, p. 139-189.

See also

  • G{\ displaystyle G}   -structure
  • (B,φ){\ displaystyle (B, \; \ varphi)}   -structure
  • Ck{\ displaystyle C ^ {k}}   -structure
  • pl{\ displaystyle pl}   -structure
  • Γ{\ displaystyle \ Gamma}   -structure
  • Contact structure
  • Almost complex structure
  • Algebraic structure
  • Topological structure
  • Hodge Structure
  • Mathematical structure

Notes

  1. ↑ Rashevsky P.K. Proceedings of the Moscow Mathematical Society. - 1957. - T. 6. - p. 337-370.
Source - https://ru.wikipedia.org/w/index.php?title=Structure_(differential_geometry)&oldid=76556801


More articles:

  • Novy Dvor (Pinsk district)
  • Alenkar, Manoel
  • Compartmentalization
  • Pinevich, Alexander Vasilievich
  • Wicker Man
  • Heel
  • Pulse Code Modulation
  • King Philip Fortress
  • Gulyanka (boat)
  • Spaces

All articles

Clever Geek | 2019