Clever Geek Handbook
📜 ⬆️ ⬇️

Second order surface

A second-order surface is the geometrical location of points in three-dimensional space whose rectangular coordinates satisfy an equation of the form

aelevenx2+a22y2+a33z2+2a12xy+2a23yz+2a13xz+2a14x+2a24y+2a34z+a44=0{\ displaystyle a_ {11} x ^ {2} + a_ {22} y ^ {2} + a_ {33} z ^ {2} + 2a_ {12} xy + 2a_ {23} yz + 2a_ {13} xz + 2a_ {14} x + 2a_ {24} y + 2a_ {34} z + a_ {44} = 0} a_ {11} x ^ {2} + a_ {22} y ^ {2} + a_ {33} z ^ {2} + 2a_ {12} xy + 2a_ {23} yz + 2a_ {13} xz + 2a_ { 14} x + 2a_ {24} y + 2a_ {34} z + a_ {44} = 0

in which at least one of the coefficientsaeleven {\ displaystyle a_ {11}} a_ {11} ,a22 {\ displaystyle a_ {22}} a _ {{22}} ,a33 {\ displaystyle a_ {33}} a _ {{33}} ,a12 {\ displaystyle a_ {12}} a _ {{12}} ,a23 {\ displaystyle a_ {23}} a _ {{23}} ,a13 {\ displaystyle a_ {13}} a _ {{13}} different from zero.

Second-order surfaces obtained for various values ​​of the parameters of the equation

Types of second-order surfaces

Cylindrical surfaces

SurfaceS {\ displaystyle S} S called a cylindrical surface with a generatrixl→ {\ displaystyle {\ vec {l}}} {\vec {l}} if for any pointM0 {\ displaystyle M_ {0}} M_{0} of this surface, a straight line passing through this point parallel tol→ {\ displaystyle {\ vec {l}}} {\vec {l}} belongs entirely to the surfaceS {\ displaystyle S} S .

Theorem (on the equation of a cylindrical surface).
If in some Cartesian rectangular coordinate system the surfaceS {\ displaystyle S} S has an equationf(x,y)=0 {\ displaystyle f (x, y) = 0} f(x,y)=0 thenS {\ displaystyle S} S - a cylindrical surface with a generatrix parallel to the axisOZ {\ displaystyle OZ} OZ .

Equation curvef(x,y)=0 {\ displaystyle f (x, y) = 0} f(x,y)=0 in the planez=0 {\ displaystyle z = 0} z=0 , called the guide cylindrical surface.

If the guide of a cylindrical surface is given by a second-order curve , then such a surface is called a second-order cylindrical surface .

Elliptical cylinder:Parabolic cylinder:Hyperbolic cylinder:
x2a2+y2b2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} = 1} {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}=1y2=2px{\ displaystyle y ^ {2} = 2px} {\displaystyle y^{2}=2px}x2a2-y2b2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} - {\ frac {y ^ {2}} {b ^ {2}}}!! = 1} {\frac {x^{2}}{a^{2}}}-{\frac {y^{2}}{b^{2}}}\!=1
Cil.pngPar.pngHip el.png
A pair of matching lines:A pair of matching planes:A pair of intersecting planes:
x2a2+y2b2=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} = 0}  y2=0{\ displaystyle y ^ {2} = 0}  x2a2-y2b2=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} - {\ frac {y ^ {2}} {b ^ {2}}}!! = 0}  

Conical surfaces

 
Conical surface.

SurfaceS {\ displaystyle S}   called a conical surface with a vertex at a pointO {\ displaystyle O}   if for any pointM0 {\ displaystyle M_ {0}}   this surface is a straight line passing throughM0 {\ displaystyle M_ {0}}   andO {\ displaystyle O}   belongs entirely to this surface.

FunctionF(x,y,z) {\ displaystyle F (x, y, z)}   called homogeneous orderm {\ displaystyle m}   , if a∀t∈R∀x,y,z {\ displaystyle \ forall t \ in \ mathbb {R} \; \ forall x, y, z}   the following is true:F(tx,ty,tz)=tmF(x,y,z) {\ displaystyle F (tx, ty, tz) = t ^ {m} F (x, y, z)}  

Theorem (on the equation of a conical surface).
If in some Cartesian rectangular coordinate system the surfaceS {\ displaystyle S}   given by the equationF(x,y,z)=0 {\ displaystyle F (x, y, z) = 0}   whereF(x,y,z) {\ displaystyle F (x, y, z)}   Is a homogeneous function thenS {\ displaystyle S}   - conical surface with a vertex at the origin.

If the surfaceS {\ displaystyle S}   set by functionF(x,y,z) {\ displaystyle F (x, y, z)}   which is a homogeneous algebraic polynomial of the second order, thenS {\ displaystyle S}   called a second-order conical surface .

  • The canonical equation of the second-order cone has the form:
x2a2+y2b2-z2c2=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} - {\ frac {z ^ {2} } {c ^ {2}}} = 0}  

Rotation Surfaces

SurfaceS {\ displaystyle S}   called the surface of rotation around the axisOZ {\ displaystyle OZ}   if for any pointM0(x0,y0,z0) {\ displaystyle M_ {0} (x_ {0}, y_ {0}, z_ {0})}   of this surface, a circle passing through this point in the planez=z0 {\ displaystyle z = z_ {0}}   centered in(0,0,z0) {\ displaystyle (0,0, z_ {0})}   and radiusr=x02+y02 {\ displaystyle r = {\ sqrt {x_ {0} ^ {2} + y_ {0} ^ {2}}}}   belongs entirely to this surface.

Theorem (on the equation of the surface of revolution).
If in some Cartesian rectangular coordinate system the surfaceS {\ displaystyle S}   given by the equationF(x2+y2,z)=0 {\ displaystyle F (x ^ {2} + y ^ {2}, z) = 0}   thenS {\ displaystyle S}   - surface rotation around the axisOZ {\ displaystyle OZ}   .

Ellipsoid :Single-cavity hyperboloid :Double Cavity Hyperboloid:Elliptical Paraboloid :Hyperbolic paraboloid:
x2a2+y2b2+z2c2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} + {\ frac {z ^ {2} } {c ^ {2}}} = 1}  x2a2+y2b2-z2c2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} - {\ frac {z ^ {2} } {c ^ {2}}} = 1}  x2a2+y2b2-z2c2=-one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} - {\ frac {z ^ {2} } {c ^ {2}}} = - 1}  x2a2+y2b2=2z{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} = 2z}  x2a2-y2b2=2z{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} - {\ frac {y ^ {2}} {b ^ {2}}} = 2z}  
     

Ifa=b≠0 {\ displaystyle a = b \ neq 0}   The surfaces listed above are surfaces of revolution.

Elliptical Paraboloid

The elliptic paraboloid equation has the form

x2a2+y2b2=2z.{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} = 2z.}  

If aa=b {\ displaystyle a = b}   , then the elliptical paraboloid is a surface of revolution formed by the rotation of the parabola, the parameter of whichp=a2=b2 {\ displaystyle p = a ^ {2} = b ^ {2}}   , around a vertical axis passing through the vertex and focus of a given parabola.

Intersection of an elliptical paraboloid with a planez=z0>0 {\ displaystyle z = z_ {0}> 0}   is an ellipse .

Intersection of an elliptical paraboloid with a planex=x0 {\ displaystyle x = x_ {0}}   ory=y0 {\ displaystyle y = y_ {0}}   is a parabola .

Hyperbolic Paraboloid

The hyperbolic paraboloid equation has the form

x2a2-y2b2=2z.{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} - {\ frac {y ^ {2}} {b ^ {2}}} = 2z.}  

Intersection of a hyperbolic paraboloid with a planez=z0 {\ displaystyle z = z_ {0}}   is a hyperbole .

Intersection of a hyperbolic paraboloid with a planex=x0 {\ displaystyle x = x_ {0}}   ory=y0 {\ displaystyle y = y_ {0}}   is a parabola .

Due to the geometric similarity, a hyperbolic paraboloid is often called a saddle .

Center surfaces

If the center of a second-order surface exists and is unique, then its coordinates(x0,y0z0) {\ displaystyle \ left (x_ {0}, \; y_ {0} \; z_ {0} \ right)}   can be found by solving the system of equations:

{aelevenx0+a12y0+a13z0+a14=0a21x0+a22y0+a23z0+a24=0a31x0+a32y0+a33z0+a34=0{\ displaystyle {\ begin {cases} a_ {11} x_ {0} + a_ {12} y_ {0} + a_ {13} z_ {0} + a_ {14} = 0 \\ a_ {21} x_ { 0} + a_ {22} y_ {0} + a_ {23} z_ {0} + a_ {24} = 0 \\ a_ {31} x_ {0} + a_ {32} y_ {0} + a_ {33 } z_ {0} + a_ {34} = 0 \ end {cases}}}  

The matrix form of a second-order surface equation

The second-order surface equation can be rewritten in matrix form:

(xyzone)(aelevena12a13a14a21a22a23a24a31a32a33a34a41a42a43a44)(xyzone)=0{\ displaystyle {\ begin {pmatrix} x & y & z & 1 \ end {pmatrix}} {\ begin {pmatrix} a_ {11} & a_ {12} & a_ {13} & a_ {14} \\ a_ {21} & a_ {22} & a_ { 23} & a_ {24} \\ a_ {31} & a_ {32} & a_ {33} & a_ {34} \\ a_ {41} & a_ {42} & a_ {43} & a_ {44} \ end {pmatrix}} {\ begin {pmatrix} x \\ y \\ z \\ 1 \ end {pmatrix}} = 0}  

You can also select the quadratic and linear parts from each other:

(xyz)(aelevena12a13a21a22a23a31a32a33)(xyz)+2(a14a24a34)(xyz)+a44=0{\ displaystyle {\ begin {pmatrix} x & y & z \ end {pmatrix}} {\ begin {pmatrix} a_ {11} & a_ {12} & a_ {13} \\ a_ {21} & a_ {22} & a_ {23} \\ a_ {31} & a_ {32} & a_ {33} \\\ end {pmatrix}} {\ begin {pmatrix} x \\ y \\ z \ end {pmatrix}} + 2 {\ begin {pmatrix} a_ {14 } & a_ {24} & a_ {34} \ end {pmatrix}} {\ begin {pmatrix} x \\ y \\ z \ end {pmatrix}} + a_ {44} = 0}  

If designatedA=(aelevena12a13a21a22a23a31a32a33)b=(a14a24a34)X=(xyz)T {\ displaystyle A = {\ begin {pmatrix} a_ {11} & a_ {12} & a_ {13} \\ a_ {21} & a_ {22} & a_ {23} \\ a_ {31} & a_ {32} & a_ {33 } \\\ end {pmatrix}} \ quad b = {\ begin {pmatrix} a_ {14} & a_ {24} & a_ {34} \ end {pmatrix}} \ quad X = {\ begin {pmatrix} x & y & z \ end {pmatrix}} ^ {T}}   , then the equation takes the following form:

XTAX+2bX+a44=0{\ displaystyle X ^ {T} AX + 2bX + a_ {44} = 0}  

Invariants

The values ​​of the following quantities are stored during orthogonal transformations of the basis :

  • Matrix relatedA {\ displaystyle A}   :
    • Ione=trA{\ displaystyle I_ {1} = \ mathrm {tr} \, A}  
    • I2= M A one , 2 one , 2 + M A one , 3 one , 3 + M A 2 , 3 2 , 3{\ displaystyle I_ {2} = {M_ {A}} _ {1,2} ^ {1,2} + {M_ {A}} _ {1,3} ^ {1,3} + {M_ {A }} _ {2,3} ^ {2,3}}   whereMAi,ji,j {\ displaystyle {M_ {A}} _ {i, j} ^ {i, j}}   Is the second-order minor of matrix A located in rows and columns with indices i and j.
    • I3=detA{\ displaystyle I_ {3} = \ det A}  
  • Associated with the block (expanded) matrixB=(AbbTa44) {\ displaystyle B = {\ begin {pmatrix} A & b \\ b ^ {T} & a_ {44} \ end {pmatrix}}}   [one]
    • K2=∑i=one3∑j=i+onefourMBi,ji,j{\ displaystyle K_ {2} = \ sum _ {i = 1} ^ {3} \ sum _ {j = i + 1} ^ {4} {M_ {B}} _ {i, j} ^ {i, j}}  
    • K3=∑i=one2∑j=i+one3∑k=j+onefourMBi,j,ki,j,k{\ displaystyle K_ {3} = \ sum _ {i = 1} ^ {2} \ sum _ {j = i + 1} ^ {3} \ sum _ {k = j + 1} ^ {4} {M_ {B}} _ {i, j, k} ^ {i, j, k}}  
    • Kfour=detB{\ displaystyle K_ {4} = \ det B}  

Such invariants are also sometimes called semi-invariants or seven-invariants.

With the parallel transfer of the coordinate systemIone,I2,I3,Kfour {\ displaystyle I_ {1}, I_ {2}, I_ {3}, K_ {4}}   remain unchanged. Wherein:

  • K3{\ displaystyle K_ {3}}   remains unchanged only ifI2=I3=Kfour=0 {\ displaystyle I_ {2} = I_ {3} = K_ {4} = 0}  
  • K2{\ displaystyle K_ {2}}   remains unchanged only ifI2=I3=Kfour=K3=0 {\ displaystyle I_ {2} = I_ {3} = K_ {4} = K_ {3} = 0}  

Classification of second-order surfaces with respect to the values ​​of invariants

SurfaceThe equationInvariants
Ellipsoidx2a2+y2b2+z2c2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} + {\ frac {z ^ {2} } {c ^ {2}}} = 1}  I3≠0{\ displaystyle I_ {3} \ neq 0}  I2>0,IoneI3>0{\ displaystyle I_ {2}> 0, \ quad I_ {1} I_ {3}> 0}  Ifour<0{\ displaystyle I_ {4} <0}  
Imaginary ellipsoidx2a2+y2b2+z2c2=-one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} + {\ frac {z ^ {2} } {c ^ {2}}} = - 1}  Ifour>0{\ displaystyle I_ {4}> 0}  
Pointx2a2+y2b2+z2=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} + z ^ {2} = 0}  Ifour=0{\ displaystyle I_ {4} = 0}  
Single Cavity Hyperboloidx2a2+y2b2-z2c2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} - {\ frac {z ^ {2} } {c ^ {2}}} = 1}  I2=0{\ displaystyle I_ {2} = 0}   orIoneI3≤0 {\ displaystyle I_ {1} I_ {3} \ leq 0}  Ifour>0{\ displaystyle I_ {4}> 0}  
Double Cavity Hyperboloidx2a2+y2b2-z2c2=-one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} - {\ frac {z ^ {2} } {c ^ {2}}} = - 1}  Ifour<0{\ displaystyle I_ {4} <0}  
Conex2a2+y2b2-2z2=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} - 2z ^ {2} = 0}  Ifour=0{\ displaystyle I_ {4} = 0}  
Elliptical paraboloidx2a2+y2b2-2z=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} - 2z = 0}  I3=0{\ displaystyle I_ {3} = 0}  Ifour≠0{\ displaystyle I_ {4} \ neq 0}  Ifour<0{\ displaystyle I_ {4} <0}  
Hyperbolic paraboloidx2a2-y2b2-2z=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} - {\ frac {y ^ {2}} {b ^ {2}}} - 2z = 0}  Ifour>0{\ displaystyle I_ {4}> 0}  
Elliptical cylinderx2a2+y2b2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} = 1}  Ifour=0{\ displaystyle I_ {4} = 0}  I2>0{\ displaystyle I_ {2}> 0}  IoneK2<0{\ displaystyle I_ {1} K_ {2} <0}  
Imaginary elliptical cylinderx2a2+y2b2=-one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + {\ frac {y ^ {2}} {b ^ {2}}} = - 1}  IoneK2>0{\ displaystyle I_ {1} K_ {2}> 0}  
Straight (pair of imaginary intersecting planes)x2a2+y2=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} + y ^ {2} = 0}  K2=0{\ displaystyle K_ {2} = 0}  
Hyperbolic cylinderx2a2-y2b2=one{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} - {\ frac {y ^ {2}} {b ^ {2}}} = 1}  I2<0{\ displaystyle I_ {2} <0}  K2≠0{\ displaystyle K_ {2} \ neq 0}  
Pair of intersecting planesx2a2-y2=0{\ displaystyle {\ frac {x ^ {2}} {a ^ {2}}} - y ^ {2} = 0}  K2=0{\ displaystyle K_ {2} = 0}  
Parabolic cylindery2=2px{\ displaystyle y ^ {2} = 2px}  I2=0{\ displaystyle I_ {2} = 0}  K2≠0{\ displaystyle K_ {2} \ neq 0}  
Pair of parallel planesx2-d2=0{\ displaystyle x ^ {2} -d ^ {2} = 0}  K2=0{\ displaystyle K_ {2} = 0}  Kone<0{\ displaystyle K_ {1} <0}  
A pair of imaginary parallel planesx2+d2=0{\ displaystyle x ^ {2} + d ^ {2} = 0}  Kone>0{\ displaystyle K_ {1}> 0}  
Planex2=0{\ displaystyle x ^ {2} = 0}  Kone=0{\ displaystyle K_ {1} = 0}  

Notes

  1. ↑ Alexandrov P.S., Chapter XIX. General theory of second-order surfaces. // Lectures on analytic geometry. - Science, 1968 .-- S. 504-506. - 911 p.

Literature

  • V.A. Ilyin, G. D. Kim. Linear algebra and analytic geometry. - M .: Prospect, 2012 .-- 400 p.
  • V.A. Ilyin, E.G. Poznyak. Analytic geometry. - M .: FIZMATLIT, 2002 .-- 240 p.
  • P.S. Alexandrov. Course of analytic geometry and linear algebra. - M .: FIZMATLIT, 1979. - 511 p.
  • Shawl . A historical review of the origin and development of geometric methods . Ch. 5, § 46-54. M., 1883.

See also

  • Quadric
  • Surface rotation
  • Sphere
  • Cylindrical surface
  • Hyperboloid
  • Paraboloid
  • Ellipsoid
  • Darboux surface
Source - https://ru.wikipedia.org/w/index.php?title=Second_Surface&oldid=100681489


More articles:

  • Gray Color
  • Turin Scale
  • Coprogram
  • Fili (subway station)
  • History of Israeli Secret Services
  • Nude Phoenix
  • Cadaras
  • Vazgenashen (Martuni district)
  • Cyprus at Eurovision 2009
  • Naris

All articles

Clever Geek | 2019