Clever Geek Handbook
πŸ“œ ⬆️ ⬇️

Bell number

Bell number - the number of all unordered partitionsn {\ displaystyle n} n -element set denoted byBn {\ displaystyle B_ {n}} B_ {n} , while by definitionB0=one {\ displaystyle B_ {0} = 1} {\ displaystyle B_ {0} = 1} .

ValuesBn {\ displaystyle B_ {n}} B_ {n} forn=0,one,2,... {\ displaystyle n = 0,1,2, \ dots} n = 0,1,2, \ dots form the sequence [1] :

1, 1 , 2 , 5 , 15 , 52 , 203, 877 , 4140, 21 147, 115 975, ...

The Bell number can be calculated as the sum of Stirling numbers of the second kind :

Bn=βˆ‘m=0nS(n,m){\ displaystyle B_ {n} = \ sum _ {m = 0} ^ {n} S (n, m)} {\ displaystyle B_ {n} = \ sum _ {m = 0} ^ {n} S (n, m)} ,

and also set in recursive form:

Bn+one=βˆ‘k=0n(nk)Bk{\ displaystyle B_ {n + 1} = \ sum _ {k = 0} ^ {n} {\ binom {n} {k}} B_ {k}} {\ displaystyle B_ {n + 1} = \ sum _ {k = 0} ^ {n} {\ binom {n} {k}} B_ {k}} .

For Bell numbers, the Dobinsky formula is also valid [2] :

Bn=oneeβˆ‘k=0∞knk!{\ displaystyle B_ {n} = {\ frac {1} {e}} \ sum _ {k = 0} ^ {\ infty} {\ frac {k ^ {n}} {k!}}} {\ displaystyle B_ {n} = {\ frac {1} {e}} \ sum _ {k = 0} ^ {\ infty} {\ frac {k ^ {n}} {k!}}} .

Ifp {\ displaystyle p} p - simple, the comparison of Tushar is true:

Bn+p≑Bn+Bn+one(modp){\ displaystyle B_ {n + p} \ equiv B_ {n} + B_ {n + 1} {\ pmod {p}}} {\ displaystyle B_ {n + p} \ equiv B_ {n} + B_ {n + 1} {\ pmod {p}}}

and more general:

Bn+pm≑mBn+Bn+one(modp){\ displaystyle B_ {n + p ^ {m}} \ equiv mB_ {n} + B_ {n + 1} {\ pmod {p}}} {\ displaystyle B_ {n + p ^ {m}} \ equiv mB_ {n} + B_ {n + 1} {\ pmod {p}}} .

The exponential generating function of Bell numbers has the form [3] :

βˆ‘n=0∞Bnn!xn=eex-one{\ displaystyle \ sum _ {n = 0} ^ {\ infty} {\ frac {B_ {n}} {n!}} x ^ {n} = e ^ {e ^ {x} -1}} {\ displaystyle \ sum _ {n = 0} ^ {\ infty} {\ frac {B_ {n}} {n!}} x ^ {n} = e ^ {e ^ {x} -1}} .

Notes

  1. ↑ sequence A000110 in OEIS
  2. ↑ Introduction to Discrete Mathematics, 2006 , p. 202.
  3. ↑ Introduction to Discrete Mathematics, 2006 , p. 200.

Literature

  • Yablonsky S.V. Introduction to discrete mathematics. - M .: Higher school, 2006 .-- 392 p. - ISBN 5-06-005683-X .


Source - https://ru.wikipedia.org/w/index.php?title=Number_Bella&oldid=96694479


More articles:

  • Sari Pul (province)
  • Interior Design
  • Female Agents
  • Donner Kai
  • Moscow Archaeological Society
  • Kashiri Macho
  • MTV Unplugged +3
  • Komi Wikipedia
  • Saadi
  • Loot the loot

All articles

Clever Geek | 2019