Clever Geek Handbook
📜 ⬆️ ⬇️

Equivalence relation

The equivalence relation is an abstract binary relation between the elements of a given set, which behaves similarly to the equality relation .

Content

Definition

Equivalence relation (~ {\ displaystyle \ sim}   ) on the setX {\ displaystyle X}   Is a binary relation for which the following conditions are met:

  1. reflexivity :a~a {\ displaystyle a \ sim a}   for anyonea {\ displaystyle a}   atX {\ displaystyle X}   ;
  2. symmetry : ifa~b {\ displaystyle a \ sim b}   thenb~a {\ displaystyle b \ sim a}   ;
  3. transitivity : ifa~b {\ displaystyle a \ sim b}   andb~c {\ displaystyle b \ sim c}   thena~c {\ displaystyle a \ sim c}   .

Record of the form "a~b {\ displaystyle a \ sim b}   "Reads like"a {\ displaystyle a}   is equivalent tob {\ displaystyle b}   ".

Related definitions

Equivalence class[a]⊂X {\ displaystyle [a] \ subset X}   elementa∈X {\ displaystyle a \ in X}   called a subset of elements equivalenta {\ displaystyle a}   ; i.e,

[a]={x∈X|x~a}{\ displaystyle [a] = \ {\, x \ in X \ mid x \ sim a \, \}}   .

From the above definition it immediately follows that ifb∈[a] {\ displaystyle b \ in [a]}   then[a]=[b] {\ displaystyle [a] = [b]}   .

The quotient set is the set of all equivalence classes of a given setX {\ displaystyle X}   for a given ratio~ {\ displaystyle \ sim}   denoted byX/~ {\ displaystyle X / {\ sim}}   .

For element equivalence classa {\ displaystyle a}   The following notation is used:[a] {\ displaystyle [a]}   ,a/~ {\ displaystyle a / {\ sim}}   ,a¯ {\ displaystyle {\ overline {a}}}   .

Set of equivalence classes with respect to~ {\ displaystyle \ sim}   is a partitioning set .

Examples

  • Equality ("= {\ displaystyle \; =}   "), A trivial equivalence relation on any set, in particular, real numbers .
  • Comparison modulo (“a ≡ b (mod n)”).
  • In euclidean geometry
    • Congruence ratio ("≅ {\ displaystyle \ cong}   ").
    • Attitude of similarity ("~ {\ displaystyle \ \ sim}   ").
    • The ratio of parallel lines ("‖ {\ displaystyle \ |}   ").
  • Equivalence of functions in mathematical analysis :
    It is said that the functionf(x) {\ displaystyle f (x)}   equivalent to functiong(x) {\ displaystyle g (x)}   atx→x0 {\ displaystyle x \ rightarrow x_ {0}}   if it allows viewf(x)=α(x)g(x) {\ displaystyle f (x) = \ alpha (x) g (x)}   whereα(x)→one {\ displaystyle \ alpha (x) \ rightarrow 1}   atx→x0 {\ displaystyle x \ rightarrow x_ {0}}   . In this case, writef(x)~g(x) {\ displaystyle f (x) \ sim g (x)}   , recalling, if necessary, that this is a comparison of functions withx→x0 {\ displaystyle x \ rightarrow x_ {0}}   . If ag(x)≠0 {\ displaystyle g (x) \ neq 0}   atx≠x0 {\ displaystyle x \ neq x_ {0}}   equivalence of functionsf(x) {\ displaystyle f (x)}   andg(x) {\ displaystyle g (x)}   atx→x0 {\ displaystyle x \ rightarrow x_ {0}}   obviously equivalent to the ratiolimx→x0f(x)g(x)=one {\ displaystyle \ lim _ {x \ rightarrow x_ {0}} {\ frac {f (x)} {g (x)}} = 1}   .
  • Equivalence of norms on vector space.
  • The ratio of equal power sets.
  • Isomorphism of groups , rings , vector spaces
  • Category equivalence .
  • Isomorphism in a certain category defines an equivalence relation on this category.

Equivalence classes

The set of all equivalence classes corresponding to the equivalence relation~ {\ displaystyle \ sim}   denoted byX/~ {\ displaystyle X / {\ sim}}   and is called factor set with respect to~ {\ displaystyle \ sim}   . In this case, the surjective mapping

p:x↦[x]{\ displaystyle p \ colon x \ mapsto [x]}  

called natural mapping (or canonical projection )X {\ displaystyle X}   on the factor setX/~ {\ displaystyle X / {\ sim}}   .

Let beX {\ displaystyle X}   andY {\ displaystyle Y}   - setsf:X→Y {\ displaystyle f \ colon X \ to Y}   - mapping, then binary relationx~y {\ displaystyle x \ sim y}   defined by rule

x~y⟺f(x)=f(y),x,y∈X{\ displaystyle x \ sim y \ iff f (x) = f (y), \ quad x, y \ in X}   ,

is an equivalence relation onX {\ displaystyle X}   . With this mappingf {\ displaystyle f}   induces mappingf¯:X/~→Y {\ displaystyle {\ overline {f}} \ colon X / {\ sim} \ to Y}   defined by rule

f¯([x])=f(x){\ displaystyle {\ overline {f}} ([x]) = f (x)}  

or, which is the same,

(f¯∘p)(x)=f(x){\ displaystyle ({\ overline {f}} \ circ p) (x) = f (x)}   .

This results in a mapping factorization .f {\ displaystyle f}   on a surjective mappingp {\ displaystyle p}   and injective mappingf¯ {\ displaystyle {\ overline {f}}}   .

See also

  • The relation of tolerance is a weakened form of equivalence.
  • Equivalence is a logical operation.
  • Equal sign .

Literature

  • A. I. Kostrikin , Introduction to Algebra. M .: Science, 1977, 47-51.
  • A.I. Maltsev , Algebraic systems, Moscow : Nauka, 1970, 23-30.
  • Equality type relation (equivalence relation) // Big Soviet Encyclopedia (in 30 tons) / A. M. Prokhorov (ch. Red.). - 3rd ed. - M: Owls. Encyclopedia, 1974. - T. XVIII. - p. 629. - 632 p.
Source - https://ru.wikipedia.org/w/index.php?title=Equality ratio&oldid = 99326352


More articles:

  • Ngata, Apirana
  • Electronics D3-28
  • Spassk (Nizhny Novgorod Region)
  • Azarkh, Lana Aleksandrovna
  • June 24
  • Tonga national football team
  • Revolutionary Workers Party Mindanao
  • Australian Supreme Court
  • Kabul (province)
  • Kaluga (electro depot)

All articles

Clever Geek | 2019