Clever Geek Handbook
📜 ⬆️ ⬇️

Lutetium

Lutetium ( chemical symbol - Lu ; Lat. Lu tetium ) - a chemical element belonging to the group of lanthanides .

Lutetium
← Ytterbium | Hafnium →
71Lu
↓
Lr
ВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесонPeriodic system of elements
71 Lu
Hexagonal.svg
Electron shell 071 Lutetium.svg
The appearance of a simple substance
Hard, dense, silver-white metal
Lutetium sublimed dendritic and 1cm3 cube.jpg
Atom properties
Name, symbol, numberLutetium / Lutetium (Lu), 71
Atomic mass
( molar mass )
174.9668 (1) [1] a. E. m. ( g / mol )
Electronic configuration[Xe] 4f 14 5d 1 6s 2
Atom radius175 pm
Chemical properties
Covalent radius156 pm
Ion radius(+ 3e) 85 pm
Electronegativity1.27 (Pauling scale)
Electrode potentialLu ← Lu 3+ -2.30 V
Oxidation state3
Ionization energy
(first electron)
513.0 (5.32) kJ / mol ( eV )
Thermodynamic properties of a simple substance
Density (at n. In. )9,8404 g / cm³
Melting temperature1936 K
Boiling temperature3668 K
Ud. heat of evaporation414 kJ / mol
Molar heat capacity26.5 [2] J / (K · mol)
Molar volume17.8 cm ³ / mol
The crystal lattice of a simple substance
Grid structurehexagonal
Lattice optionsa = 3,503 c = 5,551 [3]
C / a ratio1,585
Other features
Thermal conductivity(300 K) (16.4) W / (mK)
CAS number
71
Lutetium
Lu
174.9668
4f 14 5d 1 6s 2

Content

Opening History

The element in the form of oxide in 1907 was independently discovered by the French chemist Georges Urbain , the Austrian mineralogist Karl Auer von Welsbach and the American chemist Charles James . All of them discovered lutetium as an impurity to ytterbium oxide, which, in turn, was discovered in 1878 as an admixture to erbium oxide, isolated in 1843 from yttrium oxide , discovered in 1797 in the gadolinite mineral. All of these rare earth elements have very similar chemical properties. The priority of the discovery belongs to J. Urban.

Origin of title

The name of the element, its discoverer, Georges Urbain, came from the Latin name of Paris - Lutetia Parisorum . For ytterbium, from which lutetium was separated, the name neoitterbium was suggested. Von Welsbach, who challenged the discovery priority, proposed the name Cassiopia ( cassiopium ) for lutetium, and aldebaranium for lutetium in honor of the Northern Hemisphere constellation and the brightest star in the Taurus constellation, respectively. Given Urben’s priority in the separation of lutetium and ytterbium, in 1914 the International Atomic Balance Commission adopted the name Lutecium , which in 1949 was changed to Lutetium (the Russian name did not change). However, until the early 1960s, the name Cassiopias were used in the works of German scientists.

Getting

To obtain lutetium, it is extracted from minerals along with other heavy rare earth elements. Separation of lutetium from other lanthanides is carried out by extraction , ion exchange, or fractional crystallization, and metallic lutetium is obtained by calcium reduction from LuF 3 fluoride.

Prices

The price of lutetium metal with a purity of> 99.9% is 3.5–5.5 thousand dollars per 1 kg [4] . Lutetium is the most expensive of rare earth metals, due to the difficulty of its separation from a mixture of rare earth elements and limited use.

Properties

Physical Properties

Lutetium is a silver-white metal that is easily machined. It is the heaviest element among lanthanides in terms of both atomic weight and density (9.8404 g / cm³). The melting point of lutetium (1663 ° C) is the highest among all rare-earth elements. Due to the effect of lanthanoid compression among all lanthanides, lutetium has the smallest atomic and ionic radii.

Chemical Properties

At room temperature in air, lutetium is covered with a dense oxide film, at a temperature of 400 ° C it is oxidized. When heated, interacts with halogens , sulfur and other non-metals .

Lutetium reacts with inorganic acids to form salts. Upon evaporation of water-soluble salts of lutetium ( chlorides , sulfates , acetates , nitrates ), crystalline hydrates are formed.

In the interaction of aqueous solutions of lutetium salts with hydrofluoric acid , a very poorly soluble precipitate of lutetium fluoride LuF 3 is formed . The same compound can be obtained by the reaction of lutetium oxide Lu 2 O 3 with gaseous hydrogen fluoride or fluorine .

Lutetium hydroxide is formed by the hydrolysis of its water-soluble salts.

Analytical Definition

Like other rare earth elements , photometrically can be determined with the alizarin red C reagent.

Application

Recording Media

Ferro garnets doped with lutetium (for example, gadolinium-gallium garnet , GGG) are used to produce storage media on CMD ( cylindrical magnetic domains ).

Laser materials

Used to generate laser radiation on lutetium ions. Lutetium scandate, lutetium gallate, lutetium aluminate , doped with holmium and thulium , generate radiation with a wavelength of 2.69 microns , and neodymium ions - 1.06 microns, and are excellent materials for the production of high-power military lasers and for medicine.

Magnetic materials

Alloys for very powerful permanent magnets of the lutetium – iron – aluminum and lutetium – iron – silicon systems have very high magnetic energy, stable properties, and a high Curie point , but the very high cost of lutetium limits their use to only the most critical areas of use (special studies, space and other).

Heat-resistant conductive ceramics

Chromite lutetium finds some use.

Nuclear physics and energy

Lutetium oxide is used in atomic technology, which is small in volume, as a neutron absorber and also as an activation detector . Single crystal lutetium silicate (LSO), doped with cerium , is a very good scintillator and as such is used to detect particles in nuclear physics , elementary particle physics , and nuclear medicine (in particular, in positron emission tomography ).

High-temperature superconductivity

Lutetium oxide is used to control the properties of superconducting metal oxide ceramics.

Metallurgy

Adding lutetium to chromium and its alloys gives the best mechanical properties and improves processability.

In recent years, considerable interest in lutetium is due, for example, to the fact that when doping with lutetium a number of heat-resistant materials and alloys based on chromium-nickel, their service life sharply increases.

Isotopes

Natural lutetium consists of two isotopes : stable 175 Lu ( isotopic abundance of 97.41%) and long-lived beta-radioactive 176 Lu (isotope abundance of 2.59%, half-life of 3.78⋅10 10 years), which decays into stable hafnium 176 . Radioactive 176 Lu is used in one of the methods of nuclear geo- and cosmochronology ( lutetium-hafnium dating ). 32 artificial radioisotopes of lutetium (from 150 Lu to 184 Lu) are also known, in some of them metastable states (a total of 18) are found.

Symbol
nuclide
Z ( p )N ( n )Mass of isotope [5]
( A. e. m. )
Period
half life [6]
(T 1/2 )
Back and parity
kernels [6]
Excitation energy
150 Lu7179149.9732343 ms2+
151 Lu7180150.9675880.6 ms11 / 2-
152 Lu7181151.96412650 msfive-
153 Lu7182152,95877900 ms11 / 2-
154 Lu7183153.957521 s2-
155 Lu7184154.95431668.6 ms11 / 2-
156 Lu7185155,95303494 ms2-
157 Lu7186156,9500986.8 seconds1/2 +
158 Lu7187157,94931310.6 s2-
159 Lu7188158.9466312.1 seconds1/2 +
160 Lu7189159.9460336.1 seconds2-
161 Lu7190160,9435777 s1/2 +
162 Lu7191161.943281.37 minone-
163 Lu7192162.941183.97 min1/2 +
164 Lu7193163.941343.14 minone-
165 Lu7194164,93940710.74 min1/2 +
166 Lu7195165,939862.65 min6-
167 Lu7196166,9382751.5 min7/2 +
168 lu7197167,938745.5 min6-
169 Lu7198168,93765134.06 h7/2 +
170 Lu7199169.9384752,012 days0+
171 Lu71100170,93791318.24 days7/2 +
172 Lu71101171.9390866,70 daysfour-
173 Lu71102172,93893061.37 years7/2 +
174 Lu71103173,94033753.31 yearsone-
175 Lu71104174,9407718stable7/2 +
176 Lu71105175.94268633.85⋅10 10 years7-
177 Lu71106176,94375816.6475 days7/2 +
178 Lu71107177,94595528.4 min1+
179 Lu71108178,9473274.59 h7/2 +
180 Lu71109179,949885.7 min5+
181 Lu71110180.951973.5 min7/2 +
182 Lu71111181.955042.0 minone
183 Lu71112182.9575758 s7/2 +
184 Lu71113183,9609120 s3+

Prevalence in Nature

Content in the earth's crust - 0,00008% by weight. Content in sea water is 0.0000012 mg / l. The main industrial minerals are xenotime , evkenite , bastnezit .

Biological role

Soluble salts have low toxicity.

Notes

  1. ↑ Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg , Glenda O'Connor, Thomas Walczyk, Shige Yoneda, Xiang-Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (Eng.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 - P. 1047-1078 . - DOI : 10.1351 / PAC-REP-13-03-02 .
  2. ↑ Chemical encyclopedia: in 5 tt. / Editorial: Knunyants I.L. (ch. Red.). - Moscow: Soviet Encyclopedia, 1990. - T. 2. - p. 619. - 671 p. - 100 000 copies
  3. ↑ WebElements Periodic Table of the Elements | Lutetium | crystal structures
  4. ↑ Prices for lutetium
  5. ↑ Data shown by Audi G. , Wapstra AH , Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (Eng.) // Nuclear Physics A. - 2003. - Vol. 729 - P. 337-676 . - DOI : 10.1016 / j.nuclphysa.2003.11.003 . - .
  6. ↑ 1 2 Data are provided by Audi G. , Bersillon O. , Blachot J. , Wapstra AH . Nuclear Physics A. - 2003. - T. 729 . - p . 3-128 . - DOI : 10.1016 / j.nuclphysa.2003.11.001 . - .

Links

  • Lutetia at Webelements
  • Lutetia in the Popular Library of Chemical Elements
  • Lutetium
Source - https://ru.wikipedia.org/w/index.php?title=Lutetium&oldid=99969976


More articles:

  • Headless Horseman (novel)
  • Utorgosh
  • Shepel, Anatoly Nikolaevich
  • Turin Observatory
  • Rustikello from Pisa
  • Gallium3D
  • Skhodnensky bowl
  • List of the world's tallest buildings and structures
  • Bondarenko, Anatoly Nikolaevich
  • Old Serbia

All articles

Clever Geek | 2019