Clever Geek Handbook
📜 ⬆️ ⬇️

Braid theory

An example of a spit with three arcs.

The braid theory is a section of topology and algebra that studies braids and braid groups composed of their equivalence classes.

Content

Spit Definition

Spit ofn {\ displaystyle n}   threads - an object consisting of two parallel planesP0 {\ displaystyle P_ {0}}   andPone {\ displaystyle P_ {1}}   in three-dimensional spaceR3 {\ displaystyle \ mathbb {R} ^ {3}}   containing ordered sets of pointsaone,a2,...,an∈P0 {\ displaystyle a_ {1}, a_ {2}, \ dots, a_ {n} \ in P_ {0}}   andbone,b2,...,bn∈Pone {\ displaystyle b_ {1}, b_ {2}, \ dots, b_ {n} \ in P_ {1}}   and fromn {\ displaystyle n}   disjoint simple arcslone,l2,...,ln {\ displaystyle l_ {1}, l_ {2}, \ dots, l_ {n}}   crossing each parallel planePt {\ displaystyle P_ {t}}   betweenP0 {\ displaystyle P_ {0}}   andPone {\ displaystyle P_ {1}}   one time and connecting points{ai} {\ displaystyle \ {a_ {i} \}}   with dots{bi} {\ displaystyle \ {b_ {i} \}}   .

It is usually considered that the pointsaone,a2,...,an {\ displaystyle a_ {1}, a_ {2}, \ dots, a_ {n}}   lie on a straight linel0 {\ displaystyle l_ {0}}   atP0 {\ displaystyle P_ {0}}   and dotsbone,b2,...,bn {\ displaystyle b_ {1}, b_ {2}, \ dots, b_ {n}}   on the straightlone {\ displaystyle l_ {1}}   atPone {\ displaystyle P_ {1}}   parallell0 {\ displaystyle l_ {0}}   , andai {\ displaystyle a_ {i}}   located underbi {\ displaystyle b_ {i}}   for eachi {\ displaystyle i}   .

The braids are depicted in projection on the plane passing throughl0 {\ displaystyle l_ {0}}   andlone {\ displaystyle l_ {1}}   This projection can be brought into general position so that there are only a finite number of double points lying in pairs in different levels, and the intersections are transversal .

Braid Group

In the set of all braids with n threads and with fixedP0,Pone,{ai},{bi} {\ displaystyle P_ {0}, P_ {1}, \ {a_ {i} \}, \ {b_ {i} \}}   an equivalence relation is introduced. It is determined by homeomorphisms.h:Π→Π {\ displaystyle h: \ Pi \ to \ Pi}   whereΠ {\ displaystyle \ Pi}   - area betweenP0 {\ displaystyle P_ {0}}   andPone {\ displaystyle P_ {1}}   identical withP0∪Pone {\ displaystyle P_ {0} \ cup P_ {1}}   . Braidsα {\ displaystyle \ alpha}   andβ {\ displaystyle \ beta}   are equivalent if there is such a homeomorphismh {\ displaystyle h}   , whath(α)=β {\ displaystyle h (\ alpha) = \ beta}   .

Equivalence classes, hereinafter also referred to as braids, form a braid groupB(n) {\ displaystyle B (n)}   . Unit braid is an equivalence class containing a braid of n parallel segments. Spitα-one {\ displaystyle \ alpha ^ {- 1}}   backward spitα {\ displaystyle \ alpha}   determined by the reflection in the planePone/2 {\ displaystyle P_ {1/2}}  

Spit thread connectsai {\ displaystyle a_ {i}}   withbji {\ displaystyle b_ {j_ {i}}}   and defines a substitution, an element of the symmetric groupSn {\ displaystyle S_ {n}}   . If this permutation is identical, then the braid is called a colored (or pure) braid. This mapping defines an epimorphism.B(n) {\ displaystyle B (n)}   per groupSn {\ displaystyle S_ {n}}   permutations of n elements whose core is a subgroupK(n) {\ displaystyle K (n)}   corresponding to all pure braids, so there is a short exact sequence

0→K(n)→B(n)→Sn→0{\ displaystyle 0 \ to K (n) \ to B (n) \ to S_ {n} \ to 0}  

See also

  • Knot theory

Literature

  • Sosinsky A., Braids and knots. (inaccessible link) Quantum No. 2, 1989, p. 6-14
Source - https://ru.wikipedia.org/w/index.php?title=Theory_kos&oldid=100503087


More articles:

  • Julinho
  • Tankman Day
  • Montecristo (television series, 2006, Argentina)
  • Osteoid Hyperplasia
  • Asteroid List (701-800)
  • Eduards Claire
  • Trinity Church (Ulan-Ude)
  • Komarovsky Beach
  • Dean, Anthony (Senior)
  • Dai Zhen

All articles

Clever Geek | 2019