Clever Geek Handbook
📜 ⬆️ ⬇️

Tangent space

Tangent spaceTxM {\ displaystyle \ scriptstyle T_ {x} M} \ scriptstyle T_ {x} M and tangent vectorv∈TxM {\ displaystyle \ scriptstyle v \ in T_ {x} M} \ scriptstyle v \ in T_ {x} M along the curveγ(t) {\ displaystyle \ scriptstyle \ gamma (t)} \ scriptstyle \ gamma (t) passing through a pointx∈M {\ displaystyle \ scriptstyle x \ in M} \ scriptstyle x \ in M

Tangent space to a smooth manifoldM {\ displaystyle M} M at the pointx {\ displaystyle x} x - a set of tangent vectors with the natural structure of a vector space introduced on it. Tangent space toM {\ displaystyle M} M at the pointx {\ displaystyle x} x usually indicatedTxM {\ displaystyle T_ {x} M} T_ {x} M or - when it’s obvious what kind of variety is involved - justTx {\ displaystyle T_ {x}} T_ {x} .

The set of tangent spaces at all points of the manifold (together with the manifold itself) forms a vector bundle . Accordingly, each tangent space is a layer of the tangent bundle.

Tangent space at a pointp {\ displaystyle p} p to a submanifold is defined similarly.

In the simplest case, when a smooth manifold is smoothly embedded in a vector space (which is always possible, according to the Whitney embedding theorem ), each tangent space can naturally be identified with some affine subspace of the ambient vector space.

Content

Definitions

There are two standard definitions of a tangent space: through the equivalence class of smooth curves and through differentiation at a point. The first is intuitively simpler, but a number of technical difficulties arise along the way. The second is the simplest, although the level of abstraction in it is higher. The second definition is also easier to put into practice.

As an equivalence class of smooth curves

Let beM {\ displaystyle M}   - smooth variety andp∈M {\ displaystyle p \ in M}   . Consider the classΓp {\ displaystyle \ Gamma _ {p}}   smooth curvesγ:I→M {\ displaystyle \ gamma \ colon \ mathbb {I} \ to M}   such thatγ(0)=p {\ displaystyle \ gamma (0) = p}   . We introduce onΓp {\ displaystyle \ Gamma _ {p}}   equivalence relation:γone∼γ2 {\ displaystyle \ gamma _ {1} \ sim \ gamma _ {2}}   if a

|γone(t)-γ2(t)|=o(t),t→0{\ displaystyle | \ gamma _ {1} (t) - \ gamma _ {2} (t) | = o (t), t \ to 0}  

in some (and therefore in any) map containingp {\ displaystyle p}   .

Tangent space elementsTp {\ displaystyle T_ {p}}   defined as∼ {\ displaystyle \ sim}   equivalence classesΓp {\ displaystyle \ Gamma _ {p}}   ; i.e

Tp=Γp/∼{\ displaystyle T_ {p} = \ Gamma _ {p} / \ sim}   .

In a map such thatp {\ displaystyle p}   corresponds to the origin, curves fromΓp {\ displaystyle \ Gamma _ {p}}   can be added and multiplied by a number as follows

(γone+γ2)(t)=γone(t)+γ2(t){\ displaystyle (\ gamma _ {1} + \ gamma _ {2}) (t) = \ gamma _ {1} (t) + \ gamma _ {2} (t)}  
(k⋅γ)(t)=γ(k⋅t){\ displaystyle (k \ cdot \ gamma) (t) = \ gamma (k \ cdot t)}  

In this case, the result remains inΓp {\ displaystyle \ Gamma _ {p}}   .

These operations continue to equivalence classes.Tp=Γp/∼ {\ displaystyle T_ {p} = \ Gamma _ {p} / \ sim}   . Moreover, induced onTp {\ displaystyle T_ {p}}   operations no longer depend on the choice of card. So onTp {\ displaystyle T_ {p}}   the structure of the vector space is determined.

Through differentiation at a point

Let beM {\ displaystyle M}   -C∞ {\ displaystyle C ^ {\ infty}}   -Smooth variety. Then the tangent space to the manifoldM {\ displaystyle M}   at the pointp∈M {\ displaystyle p \ in M}   called the space of differentiations at this point, that is, the space of operatorsX, {\ displaystyle X,}   matching each smooth functionf:M→R {\ displaystyle f: M \ to \ mathbb {R}}   numberXf, {\ displaystyle Xf,}   and satisfying the following two conditions:

  • R{\ displaystyle \ mathbb {R}}   -linearity:X(λf+μh)=λXf+μXh,λ,μ∈R,f,h∈C∞(M) {\ displaystyle X (\ lambda f + \ mu h) = \ lambda Xf + \ mu Xh, \; \ lambda, \ mu \ in \ mathbb {R}, f, h \ in C ^ {\ infty} (M)}  
  • Leibniz rule :X(fh)=(Xf)⋅h(p)+f(p)⋅(Xh),f,h∈C∞(M). {\ displaystyle X (fh) = (Xf) \ cdot h (p) + f (p) \ cdot (Xh), \; f, h \ in C ^ {\ infty} (M).}  

On the set of all derivations at the pointp {\ displaystyle p}   a natural structure of linear space arises:

  • (X+Y)f=Xf+Yf;{\ displaystyle (X + Y) f = Xf + Yf;}  
    (k⋅X)f=k⋅(Xf).{\ displaystyle (k \ cdot X) f = k \ cdot (Xf).}  

Remarks

  • WhenCk {\ displaystyle C ^ {k}}   -smooth manifolds, in the definition through differentiation one more property should be added
    Xf=0{\ displaystyle Xf = 0}   if af(q)=o(|p-q|) {\ displaystyle f (q) = o (| pq |)}  
in some (and therefore in any) map containingp {\ displaystyle p}   .
  • Otherwise, this definition will give infinite-dimensional space, including tangent space. This space is sometimes called an algebraic tangent space . See below.
  • Let beγ∈Γp {\ displaystyle \ gamma \ in \ Gamma _ {p}}   . Then the Leibniz rule and the linearity condition of the operator are satisfied forXf=(f∘γ)′(0) {\ displaystyle Xf = (f \ circ \ gamma) '(0)}   . This allows us to identify tangent spaces obtained in the first and second definitions.

Properties

  • Tangent spacen {\ displaystyle n}   -dimensional smooth manifold isn {\ displaystyle n}   -dimensional vector space
  • For the selected local mapxone,...,xn {\ displaystyle x_ {1}, \ dots, x_ {n}}   , operatorsXi {\ displaystyle X_ {i}}   differentiation byxi {\ displaystyle x_ {i}}   :
    Xif=∂f∂xi(p){\ displaystyle X_ {i} f = {\ frac {\ partial f} {\ partial x_ {i}}} (p)}  
constitute the basisTp {\ displaystyle T_ {p}}   called the holonomic basis .

Related Definitions

  • A contact element to a manifold at some point is any hyperplane of the tangent space at this point.

Variations and generalizations

Algebraic tangent space

An algebraic tangent space arises when we in the definition of a tangent vector refuse the additional requirement stated in the remark above (which, however, is only relevant forCk {\ displaystyle C ^ {k}}   -differentiable manifolds,k<∞ {\ displaystyle k <\ infty}   ) Its definition is generalized to any locally ringed space (in particular, to any algebraic variety ).

Let beM {\ displaystyle M}   -Ck {\ displaystyle C ^ {k}}   -differentiable manifold,Ck(M) {\ displaystyle C ^ {k} (M)}   Is the ring of differentiable functions fromM {\ displaystyle M}   atR {\ displaystyle \ mathbb {R}}   . Consider the ringCxk {\ displaystyle C_ {x} ^ {k}}   function germs at a pointx∈M {\ displaystyle x \ in M}   and canonical projection[-]x:Ck(M)→Cxk {\ displaystyle [-] _ {x}: C ^ {k} (M) \ to C_ {x} ^ {k}}   . Denote bymx {\ displaystyle {\ mathfrak {m}} _ {x}}   core of ring homomorphism[f]x↦f(x) {\ displaystyle [f] _ {x} \ mapsto f (x)}   . We introduce onCxk {\ displaystyle C_ {x} ^ {k}}   structure of a real algebra using injective homomorphismi:R→Cxk {\ displaystyle i: \ mathbb {R} \ to C_ {x} ^ {k}}   ,i(a)=[consta]x {\ displaystyle i (a) = [\ mathrm {const} _ {a}] _ {x}}   and we will further identifyR {\ displaystyle \ mathbb {R}}   andi(R) {\ displaystyle i (\ mathbb {R})}   . Equality holdsCxk=R⊕mx {\ displaystyle C_ {x} ^ {k} = \ mathbb {R} \ oplus {\ mathfrak {m}} _ {x}}   [1] . Denote byCx,0k {\ displaystyle C_ {x, 0} ^ {k}}   subalgebraCxk {\ displaystyle C_ {x} ^ {k}}   consisting of all germs whose representatives have zero differentials at the pointx {\ displaystyle x}   in each card ; denoteCx,dk=R⊕mx2 {\ displaystyle C_ {x, d} ^ {k} = \ mathbb {R} \ oplus {\ mathfrak {m}} _ {x} ^ {2}}   . notice, thatCx,dk⊂Cx,0k {\ displaystyle C_ {x, d} ^ {k} \ subset C_ {x, 0} ^ {k}}   .

Consider two vector spaces:

  • TxM: =(Cxk/Cx,0k)∗{\ displaystyle T_ {x} M: = (C_ {x} ^ {k} / C_ {x, 0} ^ {k}) ^ {*}}   - this space has dimensiondim⁡M {\ displaystyle \ operatorname {dim} M}   and coincides with the tangent space toM {\ displaystyle M}   at the pointx {\ displaystyle x}   ,
  • (Cxk/Cx,dk)∗≅(mx/mx2)∗{\ displaystyle (C_ {x} ^ {k} / C_ {x, d} ^ {k}) ^ {*} \ cong ({\ mathfrak {m}} _ {x} / {\ mathfrak {m}} _ {x} ^ {2}) ^ {*}}   - this space is isomorphic to the space of differentiationsCxk=R⊕mx {\ displaystyle C_ {x} ^ {k} = \ mathbb {R} \ oplus {\ mathfrak {m}} _ {x}}   with values ​​inR⊂Cxk {\ displaystyle \ mathbb {R} \ subset C_ {x} ^ {k}}   , it is called an algebraic tangent space [2]M {\ displaystyle M}   at the pointx {\ displaystyle x}   .

If ak<∞ {\ displaystyle k <\ infty}   thenmx/mx2 {\ displaystyle {\ mathfrak {m}} _ {x} / {\ mathfrak {m}} _ {x} ^ {2}}   has a continuum dimension, and(mx/mx2)∗ {\ displaystyle ({\ mathfrak {m}} _ {x} / {\ mathfrak {m}} _ {x} ^ {2}) ^ {*}}   containsTxM {\ displaystyle T_ {x} M}   as a nontrivial subspace; whenk=∞ {\ displaystyle k = \ infty}   ork=ω {\ displaystyle k = \ omega}   these spaces coincide (andCx,0k=Cx,dk {\ displaystyle C_ {x, 0} ^ {k} = C_ {x, d} ^ {k}}   ) [3] . In both casesTxM {\ displaystyle T_ {x} M}   can be identified with the (sub) space of differentiationsCxk {\ displaystyle C_ {x} ^ {k}}   with values ​​inR {\ displaystyle \ mathbb {R}}   for vectorX∈TxM {\ displaystyle X \ in T_ {x} M}   formulaX(f)=X([f]x) {\ displaystyle X (f) = X ([f] _ {x})}   defines an injective homomorphismTxM {\ displaystyle T_ {x} M}   into the space of differentiationsCk(M) {\ displaystyle C ^ {k} (M)}   with values ​​inR {\ displaystyle \ mathbb {R}}   (structure of real algebra onCk(M) {\ displaystyle C ^ {k} (M)}   is set similarlyCxk {\ displaystyle C_ {x} ^ {k}}   ) Moreover, in the casek=∞ {\ displaystyle k = \ infty}   it turns out exactly the definition given above.

See also

  • Tangent vector
  • Tangent space
  • Tangent bundle

Notes

  1. ↑ J.-P. Serre , Lie Algebras and Lie Groups, M.: Mir, 1969.
  2. ↑ Laird E. Taylor , The Tangent Space to aCk {\ displaystyle C ^ {k}}   Manifold, Bulletin of AMS, vol. 79, no. 4, July 1973.
  3. ↑ JE Marsden, T Ratiu, R Abraham , Manifolds, Tensor Analysis, and Applications, Addison-Wesley Pub. Co., 1983.
Source - https://ru.wikipedia.org/w/index.php?title=Tangent_space&oldid=101341145


More articles:

  • Plus / minus sign
  • High-rise administrative building "Research Institute Delta"
  • HIG
  • Chandrakirti
  • Hill, Roland
  • Kuroda Kiyotaka
  • Felix, Maria
  • DAFT: A Story About Dogs, Androids, Firemen and Tomatoes
  • Gothic Kabbalah
  • Kirillov, Nikolai Kuzmich

All articles

Clever Geek | 2019