Clever Geek Handbook
📜 ⬆️ ⬇️

Numbers Harshad

Harshad numbers , or Niven numbers , are natural numbers divisible entirely by the sum of their numbers [1] [2] [3] [4] . Such a number is, for example, 1729 , since 1729 = (1 + 7 + 2 + 9) × 91 .

Obviously, all numbers from 1 to 10 are Harshad numbers.

The first 50 numbers of Harshad, not less than 10 [3] :

10 , 12 , 18 , 20 , 21 , 24 , 27 , 30 , 36 , 40 , 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200.

It also makes sense to consider Harshad numbers in other number systems . Numbers that are Harshad numbers in all number systems are called generalized Harshad numbers . There are only four of them: 1, 2, 4, 6.

History

The Harshad numbers were investigated by the Indian mathematician Dattaraya Ramchandra Kaprekar . The word “Harshad” comes from the Sanskrit harṣa IAST “great joy” [4] .

Harshad number density distribution estimate

Let beN(x) {\ displaystyle N (x)} N(x) - the number of Harshad numbers, not largex {\ displaystyle x} x then for any ε> 0

xone-ε≪N(x)≪xlog⁡log⁡xlog⁡x.{\ displaystyle x ^ {1- \ varepsilon} \ ll N (x) \ ll {\ frac {x \ log \ log x} {\ log x}}.} {\displaystyle x^{1-\varepsilon }\ll N(x)\ll {\frac {x\log \log x}{\log x}}.}

Jean-Marie de Koninck, Nicholas Doyon [5] and Katai [6] showed and proved that

N(x)=(c+o(one))xlog⁡x,{\ displaystyle N (x) = (c + o (1)) {\ frac {x} {\ log x}},} {\displaystyle N(x)=(c+o(1)){\frac {x}{\log x}},}

Where

c=1427ln⁡ten≈1,1939.{\ displaystyle c = {\ frac {14} {27}} \ ln 10 \ approx 1 {,} 1939.} {\displaystyle c={\frac {14}{27}}\ln 10\approx 1{,}1939.}

See also

  • Niven, Ivan

Notes

  1. ↑ Weisstein, Eric W. Harshad Number on the Wolfram MathWorld website.
  2. ↑ Harshad numbers ( unopened ) . Numbers Aplenty.
  3. ↑ 1 2 A005349 sequence in OEIS = Niven (or Harshad) numbers: numbers that are divisible by the sum of their digits
  4. ↑ 1 2 JJ O'Connor, EF Robertson. Dattatreya Ramachandra Kaprekar (neopr.) . MacTutor History of Mathematics archive (08-2007).
  5. ↑ De Koninck, Jean-Marie & Doyon, Nicolas (November 2003), "On the number of Niven numbers up to x ", Fibonacci Quarterly T. 41 (5): 431-440   .
  6. ↑ De Koninck, Jean-Marie; Doyon, Nicolas & Katái, I. (2003), " On the counting function for the Niven numbers ", Acta Arithmetica T. 106: 265–275 , DOI 10.4064 / aa106-3-5   .


Source - https://ru.wikipedia.org/w/index.php?title=Numbers_harshad&oldid=91227312


More articles:

  • Klein Gerard
  • Soil Acidity
  • Reina, Claudio
  • Crowning of Atlantis
  • Humic acids
  • Prosvirin Lane
  • Coat of arms of East Timor
  • Starochemodanovo
  • Kara-Suu (city)
  • Shamkovich, Leonid Aleksandrovich

All articles

Clever Geek | 2019