Clever Geek Handbook
📜 ⬆️ ⬇️

Hypersurface

A hypersurface is a generalization of the concept of a surface of 3-dimensional space for an n-dimensional space; this is a manifold of dimension n that is embedded in a Euclidean space by a unit of greater dimensionn+one {\ displaystyle n + 1} n + 1 .

Hypersurface as an object plays an important role in differential geometry; many important theorems of mathematical analysis are easily reformulated using hypersurfaces (for example, the Stokes formula and its special cases).

Hypersurface is the most common subject of space bundle.

An example is the stratification of the configuration space (the space of all possible states of the system) in terms of energy. This particular case is called the one-dimensional bundle of space (since each hypersurface we can associate with some real number - energy).

Differential operators ( rotor , etc.) are also formulated in terms of hypersurfaces. Considering, for example, the flow of a vector field through a surface (it is a hypersurface) in three-dimensional space, we obtain some characteristic of this field, which can be visualized.

In the multidimensional case, the visibility of the concept of “vector field flow” is lost; nevertheless, all the basic properties of the hypersurface are preserved ( Ostrogradsky – Gauss theorem ).

Due to the presence of some properties that are equally inherent in all hypersurfaces ( Stokes theorem ), a hypersurface is distinguished as a separate object.

Single Normal Vector

Let a hypersurface be given by parametric equations:

(one)r=r(uone,u2,...un){\ displaystyle (1) \ qquad \ mathbf {r} = \ mathbf {r} (u ^ {1}, u ^ {2}, \ dots u ^ {n})} (1)\qquad {\mathbf  {r}}={\mathbf  {r}}(u^{1},u^{2},\dots u^{n})

In this case, we will everywhere assume that functions (1) are sufficiently smooth (continuous second derivatives), with a non-degenerate metric tensorgij=(ri⋅rj) {\ displaystyle g_ {ij} = (\ mathbf {r} _ {i} \ cdot \ mathbf {r} _ {j})} g_{{ij}}=({\mathbf  {r}}_{i}\cdot {\mathbf  {r}}_{j}) . Coordinate vectorsri=∂r∂ui {\ displaystyle \ mathbf {r} _ {i} = {\ partial \ mathbf {r} \ over \ partial u ^ {i}}} {\mathbf  {r}}_{i}={\partial {\mathbf  {r}} \over \partial u^{i}} at the point of diversityP {\ displaystyle P} P define an affine subspace that is tangent to the manifold of a hyperplane. The orthogonal complement to the hyperplane is the straight lineL {\ displaystyle L} L passing through a given point of the manifold and perpendicular to it. We choose (one of two possible) directions of this line and put the unit vector on the linen {\ displaystyle \ mathbf {n}} \mathbf {n} . In the neighboring (close to the pointP {\ displaystyle P} P ) pointP′ {\ displaystyle P '} P' manifolds orthogonal lineL′ {\ displaystyle L '} L' will be close in a straight lineL {\ displaystyle L} L , therefore, the projection of the vector ontoL′ {\ displaystyle L '}   already clearly sets the positive direction on the lineL′ {\ displaystyle L '}   . Put a straight line in this positive directionL′ {\ displaystyle L '}   unit vectorn′ {\ displaystyle \ mathbf {n} '}   . Thus, moving from one point of the manifold to another in a certain region of the manifold, we obtain a vector function:

(2)n=n(P)=n(uone,u2,...un){\ displaystyle (2) \ qquad \ mathbf {n} = \ mathbf {n} (P) = \ mathbf {n} (u ^ {1}, u ^ {2}, \ dots u ^ {n})}  

This function will be continuous (since the hypersurface (1) is smooth, without singular points). Let's try to extend the function to the whole variety . This can be done in the case when, moving along any closed path that lies in the hypersurface, starting from the pointP {\ displaystyle P}   and calculating the normal vector by continuity, we return to the pointP {\ displaystyle P}   with the same direction of the normal vector. Such a hypersurface is called bilateral , or approximate . But there are also such hypersurfaces when, bypassing some closed contour, we return to the pointP {\ displaystyle P}   with the opposite normal vector. Such hypersurfaces are called one-sided , or non-orientable . Examples of one-sided hypersurfaces are a Mobius strip and a Klein bottle .

From the orthogonality of the normal vector to the coordinate vectors of the hypersurface, we have the equation:

(3)(n⋅ri)=0{\ displaystyle (3) \ qquad (\ mathbf {n} \ cdot \ mathbf {r} _ {i}) = 0}  

and the unit length of the normal vector is described by the equation:

(four)n2=(n⋅n)=one{\ displaystyle (4) \ qquad \ mathbf {n} ^ {2} = (\ mathbf {n} \ cdot \ mathbf {n}) = 1}  

Full Curvature Tensor

From the expression

(five)rij=Γijkrk+bij{\ displaystyle (5) \ qquad \ mathbf {r} _ {ij} = \ Gamma _ {ij} ^ {k} \ mathbf {r} _ {k} + \ mathbf {b} _ {ij}}  

and the fact that there is only one directionn {\ displaystyle \ mathbf {n}}   orthogonal to vectorsri {\ displaystyle \ mathbf {r} _ {i}}   , it follows that all vectors are collinear to the vectorn {\ displaystyle \ mathbf {n}}   , i.e. we can write:

(6)bij=nbij{\ displaystyle (6) \ qquad \ mathbf {b} _ {ij} = \ mathbf {n} b_ {ij}}  

The numbersbij {\ displaystyle b_ {ij}}   are projections of vectorsbij {\ displaystyle \ mathbf {b} _ {ij}}   per normal vectorn {\ displaystyle \ mathbf {n}}   , and therefore can be both positive and negative. According to formula (6), the curvature of all geodesic lines passing through a fixed pointP {\ displaystyle P}   manifolds parallel to the vectorn {\ displaystyle \ mathbf {n}}   (the centers of curvature lie on a line orthogonal to the manifold):

(7)k=bijτiτj=nbijτiτj=nk{\ displaystyle (7) \ qquad \ mathbf {k} = \ mathbf {b} _ {ij} \ tau ^ {i} \ tau ^ {j} = \ mathbf {n} b_ {ij} \ tau ^ {i } \ tau ^ {j} = \ mathbf {n} k}  
(7a)k=bijτiτj{\ displaystyle (7a) \ qquad k = b_ {ij} \ tau ^ {i} \ tau ^ {j}}  

Derived Normal Vectors

Differentiation with respect to the coordinates of the manifold of formula (4) gives:

(eight)∂∂uin2=2(n⋅ni)=0{\ displaystyle (8) \ qquad {\ partial \ over \ partial u ^ {i}} \ mathbf {n} ^ {2} = 2 (\ mathbf {n} \ cdot \ mathbf {n} _ {i}) = 0}  

that is, derivatives of the unit normal vectorni=∂n∂ui {\ displaystyle \ mathbf {n} _ {i} = {\ partial \ mathbf {n} \ over \ partial u ^ {i}}}   orthogonal to the normal vector itselfn {\ displaystyle \ mathbf {n}}   , and therefore lie in the tangent to the manifold of the hyperplane. We can decompose the vectorni {\ displaystyle \ mathbf {n} _ {i}}   on the basis vectors of the tangent space:

(9)ni=αijrj{\ displaystyle (9) \ qquad \ mathbf {n} _ {i} = \ alpha _ {i} ^ {j} \ mathbf {r} _ {j}}  

Find the decomposition coefficientsαij {\ displaystyle \ alpha _ {i} ^ {j}}   . To do this, we multiply the left and right sides of formula (9) scalarly by the vectorrk {\ displaystyle \ mathbf {r} _ {k}}   .
For the left side we have:

(ten)(ni⋅rk)=∂i(n⋅rk)-(n⋅rik)=-bik{\ displaystyle (10) \ qquad (\ mathbf {n} _ {i} \ cdot \ mathbf {r} _ {k}) = \ partial _ {i} (\ mathbf {n} \ cdot \ mathbf {r} _ {k}) - (\ mathbf {n} \ cdot \ mathbf {r} _ {ik}) = - b_ {ik}}  

And for the right:

(eleven)αij(rj⋅rk)=αijgjk=αik{\ displaystyle (11) \ qquad \ alpha _ {i} ^ {j} (\ mathbf {r} _ {j} \ cdot \ mathbf {r} _ {k}) = \ alpha _ {i} ^ {j } g_ {jk} = \ alpha _ {ik}}  

From formulas (9-11) we obtain the following formula for calculating the derivatives of the unit normal vector through the tensor of full curvature:

(12)ni=-bijrj{\ displaystyle (12) \ qquad \ mathbf {n} _ {i} = - b_ {i} ^ {j} \ mathbf {r} _ {j}}  

Note that the vectorn {\ displaystyle \ mathbf {n}}   is orthogonal to the coordinates on the manifold, and therefore its covariant derivative coincides with the partial derivative (like a scalar gradient ):

(13)∇in=∂in=ni{\ displaystyle (13) \ qquad \ nabla _ {i} \ mathbf {n} = \ partial _ {i} \ mathbf {n} = \ mathbf {n} _ {i}}  

For a geodesic line , which we will consider as a curved line in an enveloping (n + 1) -dimensional Euclidean space, the normal vector to the hypersurfacen {\ displaystyle \ mathbf {n}}   will coincide with the main normal vector to the curve if the numberk {\ displaystyle k}   in formula (7a) is positive, or will be the opposite vector (ifk {\ displaystyle k}   <0). Find the torsion of a geodesicϰ {\ displaystyle {\ boldsymbol {\ varkappa}}}   :

(14)dnds=-kτ+ϰ{\ displaystyle (14) \ qquad {d \ mathbf {n} \ over ds} = - k {\ boldsymbol {\ tau}} + {\ boldsymbol {\ varkappa}}}  
(15)dnds=niduids=niτi=-bjiτjri{\ displaystyle (15) \ qquad {d \ mathbf {n} \ over ds} = \ mathbf {n} _ {i} {du ^ {i} \ over ds} = \ mathbf {n} _ {i} \ tau ^ {i} = - b_ {j} ^ {i} \ tau ^ {j} \ mathbf {r} _ {i}}  
(sixteen)ϰ=dnds+kτ=(-bjiτj+kτi)ri{\ displaystyle (16) \ qquad {\ boldsymbol {\ varkappa}} = {d \ mathbf {n} \ over ds} + k {\ boldsymbol {\ tau}} = (- b_ {j} ^ {i} \ tau ^ {j} + k \ tau ^ {i}) \ mathbf {r} _ {i}}  

From formula (16) we see that the torsion of the geodesic line will be zero if the tangent vectorτi {\ displaystyle \ tau ^ {i}}   and will be an eigenvector of the matrixbji {\ displaystyle b_ {j} ^ {i}}   :

(17)bjiτj=kτi{\ displaystyle (17) \ qquad b_ {j} ^ {i} \ tau ^ {j} = k \ tau ^ {i}}  

The main curvatures and directions of the hypersurface

Symmetric tensorbij {\ displaystyle b_ {ij}}   in tangent at a pointP {\ displaystyle P}   to a hypersurface of a vector space defines a linear transformation:

(18)yi=bijxj{\ displaystyle (18) \ qquad y_ {i} = b_ {i} ^ {j} x_ {j}}  

and we can put the problem on the eigenvalues ​​and vectors of this transformation. First, let's move to the coordinate system, which will be a rectangular Cartesian at a pointP {\ displaystyle P}   . Since the metric tensor at this point is unit (gij=δij {\ displaystyle g_ {ij} = \ delta _ {ij}}   ), then the covariant and contravariant coordinates of the tensorbij {\ displaystyle b_ {ij}}   will be the same, therefore, transformation (18) is carried out by a symmetric matrixbij {\ displaystyle b_ {i} ^ {j}}   . As is known from matrix theory, a symmetric matrix hasn {\ displaystyle n}   mutually orthogonal eigenvectorsτ(s),s=one,2,...n {\ displaystyle {\ boldsymbol {\ tau}} ^ {(s)}, \; s = 1,2, \ dots n}   (we can also consider them unitary), and all eigenvalues ​​corresponding to them are real numbersk(s) {\ displaystyle k ^ {(s)}}   (which can be both positive and negative). In the selected coordinate system, we have:

(nineteen)bijτj(s)=k(s)τi(s){\ displaystyle (19) \ qquad b_ {i} ^ {j} \ tau _ {j} ^ {(s)} = k ^ {(s)} \ tau _ {i} ^ {(s)}}  
(20)∑iτi(s)τi(p)=(τ(s)⋅τ(p))=δsp={one,s=p0,s≠p{\ displaystyle (20) \ qquad \ sum _ {i} \ tau _ {i} ^ {(s)} \ tau _ {i} ^ {(p)} = ({\ boldsymbol {\ tau}} ^ { (s)} \ cdot {\ boldsymbol {\ tau}} ^ {(p)}) = \ delta ^ {sp} = {\ begin {cases} 1, & s = p \\ 0, & s \ neq p \ end {cases}}}  

Formula (19) has a tensor character, and therefore is valid in any coordinate system, the orthogonality of the eigenvectors (20) can also be written in any coordinate system through the metric tensor:

(21)gijτi(s)τj(p)=gijτ(s)iτ(p)j=δsp{\ displaystyle (21) \ qquad g ^ {ij} \ tau _ {i} ^ {(s)} \ tau _ {j} ^ {(p)} = g_ {ij} \ tau ^ {(s) i } \ tau ^ {(p) j} = \ delta ^ {sp}}  

Using formula (7a), we can find the curvature of the geodesic line drawn parallel to one of the eigenvectorsτ(s) {\ displaystyle {\ boldsymbol {\ tau}} ^ {(s)}}   :

(22)k=bijτ(s)iτ(s)j=k(s)τj(s)τ(s)j=k(s){\ displaystyle (22) \ qquad k = b_ {ij} \ tau ^ {(s) i} \ tau ^ {(s) j} = k ^ {(s)} \ tau _ {j} ^ {(s )} \ tau ^ {(s) j} = k ^ {(s)}}  

Eigenvaluesk(one),k(2),...k(n) {\ displaystyle k ^ {(1)}, k ^ {(2)}, \ dots k ^ {(n)}}   are called the main curvatures of the hypersurface, and the corresponding eigenvectors of them are called the main directions.

In the coordinate system, which is at a pointP {\ displaystyle P}   hypersurface has coordinate vectors coinciding with the main directions, the matrix of the tensor of full curvaturebij=bij {\ displaystyle b_ {ij} = b_ {i} ^ {j}}   will be diagonal:

(23)B=(bij)=[k(one)0⋯00k(2)⋯0⋯⋯⋱⋯00⋯k(n)]{\ displaystyle (23) \ qquad B = (b_ {ij}) = {\ begin {bmatrix} k ^ {(1)} & 0 & \ cdots & 0 \\ 0 & k ^ {(2)} & \ cdots & 0 \\\ cdots & \ cdots & \ ddots & \ cdots \\ 0 & 0 & \ cdots & k ^ {(n)} \ end {bmatrix}}}  

The same can be written in tensor notation:

(24)bij=k(i)δij{\ displaystyle (24) \ qquad b_ {ij} = k ^ {(i)} \ delta _ {ij}}  

index addition in this formulai {\ displaystyle i}   not carried out.

We write the spectral decomposition of the tensorbij {\ displaystyle b_ {ij}}   using eigenvalues ​​and vectors. In an arbitrary coordinate system, we have:

(25)bij=∑sk(s)τi(s)τj(s){\ displaystyle (25) \ qquad b_ {ij} = \ sum _ {s} k ^ {(s)} \ tau _ {i} ^ {(s)} \ tau _ {j} ^ {(s)} }  

Peterson-Codazzi Equations

Consider the action of the commutator of covariant derivatives on coordinate vectors:

(26)[∇j∇k]ri=-Rijksrs{\ displaystyle (26) \ qquad [\ nabla _ {j} \ nabla _ {k}] \ mathbf {r} _ {i} = - R _ {\, ijk} ^ {s} \ mathbf {r} _ { s}}  

We can write this commutator through the tensor of full curvature:

(27)[∇j∇k]ri=∇j(∇kri)-∇k(∇jri)=∇jbki-∇kbji={\ displaystyle (27) \ qquad [\ nabla _ {j} \ nabla _ {k}] \ mathbf {r} _ {i} = \ nabla _ {j} (\ nabla _ {k} \ mathbf {r} _ {i}) - \ nabla _ {k} (\ nabla _ {j} \ mathbf {r} _ {i}) = \ nabla _ {j} \ mathbf {b} _ {ki} - \ nabla _ { k} \ mathbf {b} _ {ji} =}  
=(∇jn)bki+n∇jbki-(∇kn)bji-n∇kbji=-(bjsbki-bksbji)rs+n(∇jbki-∇kbji){\ displaystyle \ qquad = (\ nabla _ {j} \ mathbf {n}) b_ {ki} + \ mathbf {n} \ nabla _ {j} b_ {ki} - (\ nabla _ {k} \ mathbf { n}) b_ {ji} - \ mathbf {n} \ nabla _ {k} b_ {ji} = - (b_ {j} ^ {s} b_ {ki} -b_ {k} ^ {s} b_ {ji }) \ mathbf {r} _ {s} + \ mathbf {n} (\ nabla _ {j} b_ {ki} - \ nabla _ {k} b_ {ji})}  

Comparing formulas (26) and (27), we find:

(28)Rijks=bjsbki-bksbji,Rijkl=bikbjl-bilbjk{\ displaystyle (28) \ qquad R _ {\, ijk} ^ {s} = b_ {j} ^ {s} b_ {ki} -b_ {k} ^ {s} b_ {ji}, \ qquad R_ {ijkl } = b_ {ik} b_ {jl} -b_ {il} b_ {jk}}  
(29th)∇jbki=∇kbji{\ displaystyle (29) \ qquad \ nabla _ {j} b_ {ki} = \ nabla _ {k} b_ {ji}}  

Equation (29) is called the Peterson-Codazzi equation . This equality can be interpreted as follows: the covariant derivative of the tensor of full curvature for a hypersurface is a symmetric tensor with three indices:

(thirty)∇ibjk=bijk{\ displaystyle (30) \ qquad \ nabla _ {i} b_ {jk} = b_ {ijk}}  

Internal Curvature Tensor

We substitute the spectral expansion (25) into formula (28). We find the Riemann tensor:

(31)Rijkl=bikbjl-bilbjk=∑p,s(k(p)τi(p)τk(p)k(s)τj(s)τl(s)-k(p)τi(p)τl(p)k(s)τj(s)τk(s))={\ displaystyle (31) \ qquad R_ {ijkl} = b_ {ik} b_ {jl} -b_ {il} b_ {jk} = \ sum _ {p, s} \ left (k ^ {(p)} \ tau _ {i} ^ {(p)} \ tau _ {k} ^ {(p)} k {(s)} \ tau _ {j} ^ {(s)} \ tau _ {l} ^ {( s)} - k ^ {(p)} \ tau _ {i} ^ {(p)} \ tau _ {l} ^ {(p)} k {(s)} \ tau _ {j} ^ {( s)} \ tau _ {k} ^ {(s)} \ right) =}  
=∑p,sk(p)k(s)τi(p)τj(s)(τk(p)τl(s)-τl(p)τk(s)){\ displaystyle \ qquad = \ sum _ {p, s} k ^ {(p)} k ^ {(s)} \ tau _ {i} ^ {(p)} \ tau _ {j} ^ {(s )} \ left (\ tau _ {k} ^ {(p)} \ tau _ {l} ^ {(s)} - \ tau _ {l} ^ {(p)} \ tau _ {k} ^ { (s)} \ right)}  

We introduce the notation of a bivector - oriented areaσ(ps) {\ displaystyle {\ boldsymbol {\ sigma}} ^ {(ps)}}   built on two vectors of the main directions:

(32)σ(ps)=τ(p)∧τ(s){\ displaystyle (32) \ qquad {\ boldsymbol {\ sigma}} ^ {(ps)} = {\ boldsymbol {\ tau}} ^ {(p)} \ wedge {\ boldsymbol {\ tau}} ^ {( s)}}  

or the same in components:

(33)σij(ps)=τi(p)τj(s)-τj(p)τi(s){\ displaystyle (33) \ qquad \ sigma _ {ij} ^ {(ps)} = \ tau _ {i} ^ {(p)} \ tau _ {j} ^ {(s)} - \ tau _ { j} ^ {(p)} \ tau _ {i} ^ {(s)}}  

These bivectors have a unit area and are mutually orthogonal:

(34)|σ(ps)|=|τ(p)||τ(s)|sin⁡ϕ=one{\ displaystyle (34) \ qquad | {\ boldsymbol {\ sigma}} ^ {(ps)} | = | {\ boldsymbol {\ tau}} ^ {(p)} || {\ boldsymbol {\ tau}} ^ {(s)} | \ sin \ phi = 1}  
(35)σij(ps)σ(kl)ij=0,if(ps)≠(kl){\ displaystyle (35) \ qquad \ sigma _ {ij} ^ {(ps)} \ sigma ^ {(kl) \, ij} = 0, \; {\ mbox {if}} (ps) \ neq (kl )}  

On the right side of formula (31), diagonal terms with identical indicesp=s {\ displaystyle p = s}   are equal to zero, and the off-diagonal ones are divided into two groups of the same number: terms withp<s {\ displaystyle p <s}   , and terms withp>s {\ displaystyle p> s}   . Therefore, formula (31) can be rewritten as follows:

(36)Rijkl=∑p<sk(p)k(s)σij(ps)σkl(ps){\ displaystyle (36) \ qquad R_ {ijkl} = \ sum _ {p <s} k ^ {(p)} k ^ {(s)} \ sigma _ {ij} ^ {(ps)} \ sigma _ {kl} ^ {(ps)}}  

It is easily seen from formula (36) and the property of the bivector that the Bianchi algebraic identity must hold. After all, for any bivectorσ)ij {\ displaystyle \ sigma) {ij}}   (oriented platform) we have the identity:

(37)σijσkl+σjkσil+σkiσjl=0{\ displaystyle (37) \ qquad \ sigma _ {ij} \ sigma _ {kl} + \ sigma _ {jk} \ sigma _ {il} + \ sigma _ {ki} \ sigma _ {jl} = 0}  

In the coordinate system built on the main directions of the hypersurface, the eigenvectors have the coordinates:

(38)τi(s)=δis,τ(s)={0,0,...one,0,...0}{\ displaystyle (38) \ qquad \ tau _ {i} ^ {(s)} = \ delta _ {i} ^ {s}, \ qquad {\ boldsymbol {\ tau}} ^ {(s)} = \ {0,0, \ dots 1,0, \ dots 0 \}}  

Here in the expression in parentheses, the unit stands ats {\ displaystyle s}   -th place, the remaining coordinates are zero.

You can easily record the coordinates of the bivectorsσij(ps) {\ displaystyle \ sigma _ {ij} ^ {(ps)}}   using formulas (33):

(39)σij(ps)={one,i=p,j=s-one,i=s,j=p0,for any otheri,j{\ displaystyle (39) \ sigma _ {ij} ^ {(ps)} = {\ begin {cases} 1, & i = p, \, j = s \\ - 1, & i = s, \, j = p \\ 0, & {\ mbox {for any other}} i, j \ end {cases}}}  

From (39) and (36) we find nonzero components of the Riemann tensor:

(40)Rijij=-Rijji=k(i)k(j),i≠j{\ displaystyle (40) \ qquad R_ {ijij} = - R_ {ijji} = k ^ {(i)} k ^ {(j)}, \ qquad i \ neq j}  

Further, since in the chosen coordinate system the metric tensor is equal to the identity matrix, we find the Ricci tensor and scalar curvature :

(41)Rij=∑sRisjs=0,ifi≠j{\ displaystyle (41) \ qquad R_ {ij} = \ sum _ {s} R_ {isjs} = 0, \ qquad {\ mbox {if}} i \ neq j}  
(41a)Rii=∑j≠iRijij=k(i)∑j≠ik(j){\ displaystyle (41a) \ qquad R_ {ii} = \ sum _ {j \ neq i} R_ {ijij} = k ^ {(i)} \ sum _ {j \ neq i} k ^ {(j)} }  
(42)R=∑i,ji≠jk(i)k(j)=2∑i<jk(i)k(j){\ displaystyle (42) \ qquad R = \ sum _ {i, j \ over i \ neq j} k ^ {(i)} k ^ {(j)} = 2 \ sum _ {i <j} k ^ {(i)} k ^ {(j)}}  

Reflection to a single hypersphereSn {\ displaystyle \ mathbb {S} ^ {n}} {\ mathbb {S}} ^ {n}

For each point of the hypersurfacer=r(uone,u2,...un) {\ displaystyle \ mathbf {r} = \ mathbf {r} (u ^ {1}, u ^ {2}, \ dots u ^ {n})}   we have the unit normal vectorn=n(uone,u2,...un) {\ displaystyle \ mathbf {n} = \ mathbf {n} (u ^ {1}, u ^ {2}, \ dots u ^ {n})}   (Formula 3), which we will postpone from the beginning of the Cartesian coordinate system in Euclidean(n+one) {\ displaystyle (n + 1)}   -dimensional space. The end of this vector (point) lies on the hypersphere of unit radius. Let us consider what the image of the entire hypersurface may be on this hypersphere.

If the hypersurface is flat, then its image will be only one point on the hypersphere. The image of the cylinder or cone will be a line on the hypersphere (circle - for a circular cylinder or cone). In a more general case, this will be a certain region on the hypersphere, which can, in particular, cover the entire hypersphere, even repeatedly. So for a closed manifold, we have some integer characteristic - how many times its image covers the unit hypersphere. Obviously, with small deformations of the manifold, this characteristic does not change and is a topological invariant of the hypersurface.

To derive an integral formula for calculating this invariant, we need a formula for transforming volumes when reflected into a unit hypersphereSn {\ displaystyle \ mathbb {S} ^ {n}}   .

First, we consider a small segment on the manifold, which we represent as a vectordr=ridui {\ displaystyle d \ mathbf {r} = \ mathbf {r} _ {i} du ^ {i}}   . His image on the hypersphere will be a segment:

(43)dn=nidui=-(bijdui)rj{\ displaystyle (43) \ qquad d \ mathbf {n} = \ mathbf {n} _ {i} du ^ {i} = - (b_ {i} ^ {j} du ^ {i}) \ mathbf {r } _ {j}}  

Now we can consider a box built onn {\ displaystyle n}   vectors:

(44)(dr)(one)=roneduone,(dr)(2)=r2du2,...(dr)(n)=rndun{\ displaystyle (44) \ qquad (d \ mathbf {r}) ^ {(1)} = \ mathbf {r} _ {1} du ^ {1}, \; (d \ mathbf {r}) ^ { (2)} = \ mathbf {r} _ {2} du ^ {2}, \; \ dots \; (d \ mathbf {r}) ^ {(n)} = \ mathbf {r} _ {n} du ^ {n}}  

The volume of this box will be the size of a multivector composed of the following vectors:

(45)dτ(r)=(rone∧r2∧⋯∧rn)duonedu2⋯dun{\ displaystyle (45) \ qquad d {\ boldsymbol {\ tau}} ^ {(\ mathbf {r})} = (\ mathbf {r} _ {1} \ wedge \ mathbf {r} _ {2} \ wedge \ cdots \ wedge \ mathbf {r} _ {n}) du ^ {1} du ^ {2} \ cdots du ^ {n}}  

Images of vectors (44) on the hypersphereSn {\ displaystyle \ mathbb {S} ^ {n}}   there will be such vectors:

(46)(dn)(one)=noneduone=(-∑ioneboneionerione)duone(dn)(2)=n2du2=(-∑i2b2i2ri2)du2⋯(dn)(n)=nndun=(-∑inbninrin)dun{\ displaystyle (46) \ qquad {\ begin {matrix} (d \ mathbf {n}) ^ {(1)} = \ mathbf {n} _ {1} du ^ {1} = (- \ sum _ { i_ {1}} b_ {1} ^ {i_ {1}} \ mathbf {r} _ {i_ {1}}) du ^ {1} \\ (d \ mathbf {n}) ^ {(2)} = \ mathbf {n} _ {2} du ^ {2} = (- \ sum _ {i_ {2}} b_ {2} ^ {i_ {2}} \ mathbf {r} _ {i_ {2}} ) du ^ {2} \\\ cdots \\ (d \ mathbf {n}) ^ {(n)} = \ mathbf {n} _ {n} du ^ {n} = (- \ sum _ {i_ { n}} b_ {n} ^ {i_ {n}} \ mathbf {r} _ {i_ {n}}) du ^ {n} \ end {matrix}}}  

From these images we also make a multivector:

(47)dτ(n)=(none∧n2∧⋯∧nn)duonedu2⋯dun=(-one)ndet(bji)dτ(r){\ displaystyle (47) \ qquad d {\ boldsymbol {\ tau}} ^ {(\ mathbf {n})} = (\ mathbf {n} _ {1} \ wedge \ mathbf {n} _ {2} \ wedge \ cdots \ wedge \ mathbf {n} _ {n}) du ^ {1} du ^ {2} \ cdots du ^ {n} = (- 1) ^ {n} \ det (b_ {j} ^ { i}) \, d {\ boldsymbol {\ tau}} ^ {(\ mathbf {r})}}  

From formula (47) it can be seen that the image of the multivector is proportional to the original with the proportionality coefficient, which we denote as follows:

(48)K[n]=(-one)ndet(bji)=(-k(one))(-k(2))⋯(-k(n)){\ displaystyle (48) \ qquad K ^ {[n]} = (- 1) ^ {n} \ det (b_ {j} ^ {i}) = (- k ^ {(1)}) (- k ^ {(2)}) \ cdots (-k ^ {(n)})}  

and call it the Gauss curvaturen {\ displaystyle n}   degree. This coefficient , up to a sign, is equal to the product of the main curvatures of the hypersurface.

The properties of the product of the main curvatures of a two-dimensional hypersurface were first studied by the German mathematician Karl Friedrich Gauss in 1827 .

Gauss Integral

Consider a closed hypersurfaceM {\ displaystyle M}   (similar to a sphere, a torus, etc.), and we integrate the Gauss curvature over the entire hypersurface (this is the Gaussian integral):

(49)I=∫MK[n]dτ(r){\ displaystyle (49) \ qquad I = \ int _ {M} K ^ {[n]} d \ tau ^ {(\ mathbf {r})}}  

Due to (47), the integrand is equal to the volume element of the unit hypersphereSn {\ displaystyle \ mathbb {S} ^ {n}}   taken with a plus or minus sign depending on the sign of the Gauss curvature. An image on the hypersphere can have folds when the same point of the hypersphere is covered with a plus sign for one point of the manifold, and with a minus sign for some other point of the manifold. In this case, the corresponding contributions to the integral (49) are compensated. But since the image does not have ragged edges (for bilateral hypersurfaces), it should cover the entire hypersphere, possibly several times. This fact can be written as the following formula:

(50)∫MK[n]dτ(r)=Nωn+one{\ displaystyle (50) \ qquad \ int _ {M} K ^ {[n]} d \ tau ^ {(\ mathbf {r})} = N \ omega _ {n + 1}}  

WhereN {\ displaystyle N}   Is an integer (for bilateral hypersurfaces), which can be either positive or negative, andωn+one {\ displaystyle \ omega _ {n + 1}}   - volume of a single hypersphere:

(51)ωn+one=ω(Sn)=2πn+one2Γ(n+one2){\ displaystyle (51) \ qquad \ omega _ {n + 1} = \ omega (\ mathbb {S} ^ {n}) = {2 \ pi ^ {n + 1 \ over 2} \ over \ Gamma ({ n + 1 \ over 2})}}  

For one-sided hypersurfaces, formula (50) is also valid, but the numberN {\ displaystyle N}   is half-integer (since the same point of the manifold has two images - diametrically opposite points on the hypersphere).

Note that not for all integers and half-integersN {\ displaystyle N}   there exists a smooth closed hypersurface for which equality (50) holds. For example, for a hypersurface dimension n = 1, that is, a curve in the plane, the numberN {\ displaystyle N}   cannot be half-integer (in a drop-shaped curve, there is a tail in which the normal vectors are opposite, but this point is not a regular point). Whole numbersN {\ displaystyle N}   are realized by curves that (due to self-intersections)N {\ displaystyle N}   times wrap around a fixed point on the plane. Formula (50) for the curveL {\ displaystyle L}   will be written like this:

(51)-∮L⁡kds=2πN{\ displaystyle (51) \ qquad - \ oint _ {L} kds = 2 \ pi N}  

Wherek {\ displaystyle k}   - the curvature of the curve, taken with a plus or minus sign, depending on whether the curve is bent clockwise or counterclockwise. NumberN {\ displaystyle N}   N = 0 is realized for a figure-eight curve.

For two-dimensional hypersurfaceS {\ displaystyle S}   (n=2 {\ displaystyle n = 2}   ) in three-dimensional space, the numberN {\ displaystyle N}   equal to half the Euler characteristic:

(52)N=one2χ(S){\ displaystyle (52) \ qquad N = {1 \ over 2} \ chi (S)}  

therefore, it can take all integer and half-integer values ​​less than or equal to unity:N≤one {\ displaystyle N \ leq 1}  

Examples

In a two-dimensional space (plane), any closed curve is a hypersurface

Source - https://ru.wikipedia.org/w/index.php?title=Hypersurface&oldid=96571791


More articles:

  • Koch, Roland
  • Rose, Ralph
  • Cosmic Rays
  • Commagenian Kings
  • Budan, Igor
  • Praslin
  • University of Utah
  • Farr, Bruce
  • Institute of Cytology and Genetics SB RAS
  • Gyllenhaal, Maggie

All articles

Clever Geek | 2019