Clever Geek Handbook
📜 ⬆️ ⬇️

Skew-symmetric matrix

Antisymmetric ( skew-symmetric or skew- symmetric ) matrix - square matrixA {\ displaystyle A} A over the fieldk {\ displaystyle k} k characteristics other than 2, satisfying the ratio:

AT=-A,{\ displaystyle A ^ {T} = - A,} {\ displaystyle A ^ {T} = - A,}

WhereAT {\ displaystyle A ^ {T}} A ^ {T} - transposed matrix .

Forn×n {\ displaystyle n \ times n} n \ times n matricesA {\ displaystyle A} A this ratio is equivalent to:

ai,j=-aj,i{\ displaystyle a_ {i, j} = {} - a_ {j, i}} {\ displaystyle a_ {i, j} = {} - a_ {j, i}} for alli,j=one,2,...,n {\ displaystyle i, j = 1,2, \ ldots, n} {\ displaystyle i, j = 1,2, \ ldots, n} ,

Whereai,j {\ displaystyle a_ {i, j}} a_ {i, j} - elementi {\ displaystyle i} i th row andj {\ displaystyle j} j matrix columnA {\ displaystyle A} A .

Properties

  • The rank of the skew-symmetric matrix is ​​always even .
  • Any square matrix B over a characteristic field other than 2 is the sum of the symmetric and skew-symmetric matrices, which are uniquely determined.
  • Nonzero roots of the characteristic polynomial of a real skew-symmetric matrix are purely imaginary numbers .
  • A real skew-symmetric matrix is ​​similar to a block-diagonal matrix with zero diagonal blocks and diagonal blocks2×2 {\ displaystyle 2 \ times 2}   kind of
(0a-a0){\ displaystyle {\ begin {pmatrix} 0 & a \\ - a & 0 \ end {pmatrix}}}   .
  • The set of all skew-symmetric matrices of ordern {\ displaystyle n}   over the fieldk {\ displaystyle k}   forms a Lie algebra overk {\ displaystyle k}   regarding matrix addition and commutation:
[A,B]=AB-BA{\ displaystyle [A, B] = AB-BA}   .

See also

  • Pfaffian
Source - https://ru.wikipedia.org/w/index.php?title=Cosymmetric_matrix&oldid=99957003


More articles:

  • Pokrov (City, Russia)
  • Harald III (King of Denmark)
  • Winnipeg
  • RTVI
  • Volt
  • (1709) Ukraine
  • Schoolboy Calendar
  • State Polar Academy
  • Moscow Conceptualism
  • Hérault (department)

All articles

Clever Geek | 2019