Clever Geek Handbook
📜 ⬆️ ⬇️

Elliptical coordinate system

Elliptical coordinate system

Elliptical coordinates - a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolas . For two tricksFone {\ displaystyle F_ {1}} F_ {1} andF2 {\ displaystyle F_ {2}} F_ {2} points are usually taken-c {\ displaystyle -c} {\ displaystyle -c} and+c {\ displaystyle + c} {\ displaystyle + c} on axisX {\ displaystyle X} X Cartesian coordinate system.

Content

Basic Definition

Elliptical coordinates(μ,ν) {\ displaystyle (\ mu, \; \ nu)}   usually determined by the rule:

{x=cchμcos⁡νy=cshμsin⁡ν{\ displaystyle \ left \ {{\ begin {matrix} x = c \, \ mathrm {ch} \, \ mu \ cos \ nu \\ y = c \, \ mathrm {sh} \, \ mu \ sin \ nu \ end {matrix}} \ right.}  

Whereμ⩾0 {\ displaystyle \ mu \ geqslant 0}   ,ν∈[0,2π) {\ displaystyle \ nu \ in [0, \; 2 \ pi)}   .

In this way, a family of confocal ellipses and hyperbolas is defined. Trigonometric identity

x2c2ch2μ+y2c2sh2μ=cos2⁡ν+sin2⁡ν=one{\ displaystyle {\ frac {x ^ {2}} {c ^ {2} \, \ mathrm {ch} ^ {2} \, \ mu}} + {\ frac {y ^ {2}} {c ^ {2} \, \ mathrm {sh} ^ {2} \, \ mu}} = \ cos ^ {2} \ nu + \ sin ^ {2} \ nu = 1}  

shows level linesμ {\ displaystyle \ mu}   are ellipses , and an identity from hyperbolic geometry

x2c2cos2⁡ν-y2c2sin2⁡ν=ch2μ-sh2μ=one{\ displaystyle {\ frac {x ^ {2}} {c ^ {2} \ cos ^ {2} \ nu}} - {\ frac {y ^ {2}} {c ^ {2} \ sin ^ { 2} \ nu}} = \ mathrm {ch} ^ {2} \, \ mu - \ mathrm {sh} ^ {2} \, \ mu = 1}  

shows level linesν {\ displaystyle \ nu}   are hyperbolas .

Lame Odds

Lame coefficients for elliptical coordinates(μ,ν) {\ displaystyle (\ mu, \; \ nu)}   are equal

Hμ=Hν=c(chμsinν)2+(shμcosν)2=csh2μ+sin2⁡ν.{\ displaystyle H _ {\ mu} = H _ {\ nu} = c {\ sqrt {(\ mathrm {ch} \, \ mu \, \ sin \, \ nu) ^ {2} + (\ mathrm {sh} \, \ mu \, \ cos \, \ nu) ^ {2}}} = c {\ sqrt {\ mathrm {sh} ^ {2} \, \ mu + \ sin ^ {2} \ nu}}. }  

The identities for the double angle allow us to bring them to the form

Hμ=Hν=cone2(ch2μ-cos⁡2ν).{\ displaystyle H _ {\ mu} = H _ {\ nu} = c {\ sqrt {{\ frac {1} {2}} (\ mathrm {ch} \, 2 \ mu - \ cos 2 \ nu}}) .}  

The area element is:

dS=c2(sh2μ+sin2⁡ν)dμdν,{\ displaystyle dS = c ^ {2} (\ mathrm {sh} ^ {2} \, \ mu + \ sin ^ {2} \ nu) \, d \ mu \, d \ nu,}  

and Laplacian is

∇2Φ=onec2(sh2μ+sin2⁡ν)(∂2Φ∂μ2+∂2Φ∂ν2).{\ displaystyle \ nabla ^ {2} \ Phi = {\ frac {1} {c ^ {2} (\ mathrm {sh} ^ {2} \, \ mu + \ sin ^ {2} \ nu)}} \ left ({\ frac {\ partial ^ {2} \ Phi} {\ partial \ mu ^ {2}}} + {\ frac {\ partial ^ {2} \ Phi} {\ partial \ nu ^ {2} }} \ right).}  

Other differential operators can be obtained by substituting the Lame coefficients in general formulas for orthogonal coordinates. For example, a scalar field gradientΦ(μ,ν) {\ displaystyle \ Phi (\ mu, \; \ nu)}   is recorded:

gradΦ=oneHμ∂Φ∂μeμ+oneHν∂Φ∂νeν,{\ displaystyle \ mathrm {grad} \, \ Phi = {\ frac {1} {H _ {\ mu}}} {\ frac {\ partial \ Phi} {\ partial \ mu}} \ mathbf {e} _ { \ mu} + {\ frac {1} {H _ {\ nu}}} {\ frac {\ partial \ Phi} {\ partial \ nu}} \ mathbf {e} _ {\ nu},}  

Where

eμ=c(shμcos⁡ν,chμsin⁡ν){\ displaystyle \ mathbf {e} _ {\ mu} = c (\ mathrm {sh} \, \ mu \ cos \ nu, \, \ mathrm {ch} \, \ mu \ sin \ nu)}   ,
eν=c(-chμsin⁡ν,shμcos⁡ν){\ displaystyle \ mathbf {e} _ {\ nu} = c (- \ mathrm {ch} \, \ mu \ sin \ nu, \, \ mathrm {sh} \, \ mu \ cos \ nu)}   .

Another definition

Sometimes another more geometrically intuitive definition of elliptic coordinates is used.(σ,τ) {\ displaystyle (\ sigma, \; \ tau)}   :

{σ=chμτ=cos⁡ν{\ displaystyle \ left \ {{\ begin {matrix} \ sigma = \ mathrm {ch} \, \ mu \\\ tau = \ cos \ nu \ end {matrix}} \ right.}  

Thus, the level linesσ {\ displaystyle \ sigma}   are ellipses and level linesτ {\ displaystyle \ tau}   are hyperbolas. Wherein

τ∈[-one,one],σ⩾one.{\ displaystyle \ tau \ in [-1, \; 1], \ quad \ sigma \ geqslant 1.}  

Coordinates(σ,τ) {\ displaystyle (\ sigma, \; \ tau)}   have a simple connection with the distances to the tricksFone {\ displaystyle F_ {1}}   andF2 {\ displaystyle F_ {2}}   . For any point on the plane

{done+d2=2cσdone-d2=2cτ{\ displaystyle \ left \ {{\ begin {matrix} d_ {1} + d_ {2} = 2c \ sigma \\ d_ {1} -d_ {2} = 2c \ tau \ end {matrix}} \ right. }  

Wheredone,d2 {\ displaystyle d_ {1}, \; d_ {2}}   - distance to tricksFone,F2 {\ displaystyle F_ {1}, \; F_ {2}}   respectively.

In this way:

{done=c(σ+τ)d2=c(σ-τ){\ displaystyle \ left \ {{\ begin {matrix} d_ {1} = c (\ sigma + \ tau) \\ d_ {2} = c (\ sigma - \ tau) \ end {matrix}} \ right. }  

Recall thatFone {\ displaystyle F_ {1}}   andF2 {\ displaystyle F_ {2}}   are at pointsx=-c {\ displaystyle x = -c}   andx=+c {\ displaystyle x = + c}   respectively.

The disadvantage of this coordinate system is that it does not display one-to-one on Cartesian coordinates:

{x=cστy2=c2(σ2-one)(one-τ2){\ displaystyle \ left \ {{\ begin {matrix} x = c \ sigma \ tau \\ y ^ {2} = c ^ {2} (\ sigma ^ {2} -1) (1- \ tau ^ { 2}) \ end {matrix}} \ right.}  

Lame Odds

Lame coefficients for alternative elliptical coordinates(σ,τ) {\ displaystyle (\ sigma, \; \ tau)}   equal to:

hσ=cσ2-τ2σ2-one;{\ displaystyle h _ {\ sigma} = c {\ sqrt {\ frac {\ sigma ^ {2} - \ tau ^ {2}} {\ sigma ^ {2} -1}}}}  
hτ=cσ2-τ2one-τ2.{\ displaystyle h _ {\ tau} = c {\ sqrt {\ frac {\ sigma ^ {2} - \ tau ^ {2}} {1- \ tau ^ {2}}}}.  

The area element is

dA=c2σ2-τ2(σ2-one)(one-τ2)dσdτ,{\ displaystyle dA = c ^ {2} {\ frac {\ sigma ^ {2} - \ tau ^ {2}} {\ sqrt {(\ sigma ^ {2} -1) (1- \ tau ^ {2 })}}} \, d \ sigma \, d \ tau,}  

and Laplacian is

∇2Φ=onec2(σ2-τ2)[σ2-one∂∂σ(σ2-one∂Φ∂σ)+one-τ2∂∂τ(one-τ2∂Φ∂τ)].{\ displaystyle \ nabla ^ {2} \ Phi = {\ frac {1} {c ^ {2} (\ sigma ^ {2} - \ tau ^ {2})}} left [{\ sqrt {\ sigma ^ {2} -1}} {\ frac {\ partial} {\ partial \ sigma}} \ left ({\ sqrt {\ sigma ^ {2} -1}} {\ frac {\ partial \ Phi} {\ partial \ sigma}} \ right) + {\ sqrt {1- \ tau ^ {2}}} {\ frac {\ partial} {\ partial \ tau}} \ left ({\ sqrt {1- \ tau ^ { 2}}} {\ frac {\ partial \ Phi} {\ partial \ tau}} \ right) \ right].}  

Other differential operators can be obtained by substituting the Lame coefficients in general formulas for orthogonal coordinates.


Literature

  • Korn G., Korn T. Handbook of mathematics (for scientists and engineers). - M .: Nauka, 1974.- 832 p.

See also

  • Circum Apollonius
Source - https://ru.wikipedia.org/w/index.php?title=Elliptic_system_codes&oldid=90704597


More articles:

  • Coat of arms of Cuba
  • Egorov, Andrey Igorevich
  • Dobanton Louis Jean Marie
  • Government Awards of the Russian Federation
  • Isabella Farnese
  • Eurovision 2009
  • Moscow Treaty (RSFSR - Lithuania, 1920)
  • Flopyatsevskaya alphabet
  • Banner of Dmitry Pozharsky
  • Lopez, Cesar

All articles

Clever Geek | 2019