
Elliptical coordinate system
Elliptical coordinates - a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolas . For two tricks {\ displaystyle F_ {1}}
and {\ displaystyle F_ {2}}
points are usually taken {\ displaystyle -c}
and {\ displaystyle + c}
on axis {\ displaystyle X}
Cartesian coordinate system.
Content
Basic DefinitionElliptical coordinates {\ displaystyle (\ mu, \; \ nu)} usually determined by the rule:
- {\ displaystyle \ left \ {{\ begin {matrix} x = c \, \ mathrm {ch} \, \ mu \ cos \ nu \\ y = c \, \ mathrm {sh} \, \ mu \ sin \ nu \ end {matrix}} \ right.}
Where {\ displaystyle \ mu \ geqslant 0} , {\ displaystyle \ nu \ in [0, \; 2 \ pi)} .
In this way, a family of confocal ellipses and hyperbolas is defined. Trigonometric identity
- {\ displaystyle {\ frac {x ^ {2}} {c ^ {2} \, \ mathrm {ch} ^ {2} \, \ mu}} + {\ frac {y ^ {2}} {c ^ {2} \, \ mathrm {sh} ^ {2} \, \ mu}} = \ cos ^ {2} \ nu + \ sin ^ {2} \ nu = 1}
shows level lines {\ displaystyle \ mu} are ellipses , and an identity from hyperbolic geometry
- {\ displaystyle {\ frac {x ^ {2}} {c ^ {2} \ cos ^ {2} \ nu}} - {\ frac {y ^ {2}} {c ^ {2} \ sin ^ { 2} \ nu}} = \ mathrm {ch} ^ {2} \, \ mu - \ mathrm {sh} ^ {2} \, \ mu = 1}
shows level lines {\ displaystyle \ nu} are hyperbolas .
Lame Odds
Lame coefficients for elliptical coordinates {\ displaystyle (\ mu, \; \ nu)} are equal
- {\ displaystyle H _ {\ mu} = H _ {\ nu} = c {\ sqrt {(\ mathrm {ch} \, \ mu \, \ sin \, \ nu) ^ {2} + (\ mathrm {sh} \, \ mu \, \ cos \, \ nu) ^ {2}}} = c {\ sqrt {\ mathrm {sh} ^ {2} \, \ mu + \ sin ^ {2} \ nu}}. }
The identities for the double angle allow us to bring them to the form
- {\ displaystyle H _ {\ mu} = H _ {\ nu} = c {\ sqrt {{\ frac {1} {2}} (\ mathrm {ch} \, 2 \ mu - \ cos 2 \ nu}}) .}
The area element is:
- {\ displaystyle dS = c ^ {2} (\ mathrm {sh} ^ {2} \, \ mu + \ sin ^ {2} \ nu) \, d \ mu \, d \ nu,}
and Laplacian is
- {\ displaystyle \ nabla ^ {2} \ Phi = {\ frac {1} {c ^ {2} (\ mathrm {sh} ^ {2} \, \ mu + \ sin ^ {2} \ nu)}} \ left ({\ frac {\ partial ^ {2} \ Phi} {\ partial \ mu ^ {2}}} + {\ frac {\ partial ^ {2} \ Phi} {\ partial \ nu ^ {2} }} \ right).}
Other differential operators can be obtained by substituting the Lame coefficients in general formulas for orthogonal coordinates. For example, a scalar field gradient {\ displaystyle \ Phi (\ mu, \; \ nu)} is recorded:
- {\ displaystyle \ mathrm {grad} \, \ Phi = {\ frac {1} {H _ {\ mu}}} {\ frac {\ partial \ Phi} {\ partial \ mu}} \ mathbf {e} _ { \ mu} + {\ frac {1} {H _ {\ nu}}} {\ frac {\ partial \ Phi} {\ partial \ nu}} \ mathbf {e} _ {\ nu},}
Where
- {\ displaystyle \ mathbf {e} _ {\ mu} = c (\ mathrm {sh} \, \ mu \ cos \ nu, \, \ mathrm {ch} \, \ mu \ sin \ nu)} ,
- {\ displaystyle \ mathbf {e} _ {\ nu} = c (- \ mathrm {ch} \, \ mu \ sin \ nu, \, \ mathrm {sh} \, \ mu \ cos \ nu)} .
Another definitionSometimes another more geometrically intuitive definition of elliptic coordinates is used. {\ displaystyle (\ sigma, \; \ tau)} :
- {\ displaystyle \ left \ {{\ begin {matrix} \ sigma = \ mathrm {ch} \, \ mu \\\ tau = \ cos \ nu \ end {matrix}} \ right.}
Thus, the level lines {\ displaystyle \ sigma} are ellipses and level lines {\ displaystyle \ tau} are hyperbolas. Wherein
- {\ displaystyle \ tau \ in [-1, \; 1], \ quad \ sigma \ geqslant 1.}
Coordinates {\ displaystyle (\ sigma, \; \ tau)} have a simple connection with the distances to the tricks {\ displaystyle F_ {1}} and {\ displaystyle F_ {2}} . For any point on the plane
- {\ displaystyle \ left \ {{\ begin {matrix} d_ {1} + d_ {2} = 2c \ sigma \\ d_ {1} -d_ {2} = 2c \ tau \ end {matrix}} \ right. }
Where {\ displaystyle d_ {1}, \; d_ {2}} - distance to tricks {\ displaystyle F_ {1}, \; F_ {2}} respectively.
In this way:
- {\ displaystyle \ left \ {{\ begin {matrix} d_ {1} = c (\ sigma + \ tau) \\ d_ {2} = c (\ sigma - \ tau) \ end {matrix}} \ right. }
Recall that {\ displaystyle F_ {1}} and {\ displaystyle F_ {2}} are at points {\ displaystyle x = -c} and {\ displaystyle x = + c} respectively.
The disadvantage of this coordinate system is that it does not display one-to-one on Cartesian coordinates:
- {\ displaystyle \ left \ {{\ begin {matrix} x = c \ sigma \ tau \\ y ^ {2} = c ^ {2} (\ sigma ^ {2} -1) (1- \ tau ^ { 2}) \ end {matrix}} \ right.}
Lame Odds
Lame coefficients for alternative elliptical coordinates {\ displaystyle (\ sigma, \; \ tau)} equal to:
- {\ displaystyle h _ {\ sigma} = c {\ sqrt {\ frac {\ sigma ^ {2} - \ tau ^ {2}} {\ sigma ^ {2} -1}}}}
- {\ displaystyle h _ {\ tau} = c {\ sqrt {\ frac {\ sigma ^ {2} - \ tau ^ {2}} {1- \ tau ^ {2}}}}.
The area element is
- {\ displaystyle dA = c ^ {2} {\ frac {\ sigma ^ {2} - \ tau ^ {2}} {\ sqrt {(\ sigma ^ {2} -1) (1- \ tau ^ {2 })}}} \, d \ sigma \, d \ tau,}
and Laplacian is
- {\ displaystyle \ nabla ^ {2} \ Phi = {\ frac {1} {c ^ {2} (\ sigma ^ {2} - \ tau ^ {2})}} left [{\ sqrt {\ sigma ^ {2} -1}} {\ frac {\ partial} {\ partial \ sigma}} \ left ({\ sqrt {\ sigma ^ {2} -1}} {\ frac {\ partial \ Phi} {\ partial \ sigma}} \ right) + {\ sqrt {1- \ tau ^ {2}}} {\ frac {\ partial} {\ partial \ tau}} \ left ({\ sqrt {1- \ tau ^ { 2}}} {\ frac {\ partial \ Phi} {\ partial \ tau}} \ right) \ right].}
Other differential operators can be obtained by substituting the Lame coefficients in general formulas for orthogonal coordinates.
Literature- Korn G., Korn T. Handbook of mathematics (for scientists and engineers). - M .: Nauka, 1974.- 832 p.
See also