Clever Geek Handbook
📜 ⬆️ ⬇️

Burgers equation

The Burgers equation is the partial differential equation used in hydrodynamics . This equation is known in various fields of applied mathematics . The equation is named after Johann Martinus Burgers (1895-1981). It is a special case of the Navier - Stokes equations in the one-dimensional case.

Let the fluid flow velocity u and its kinematic viscosity be givenν {\ displaystyle \ nu} \ nu . The Burgers equation in general form is written as follows:

∂u∂t+u∂u∂x=ν∂2u∂x2{\ displaystyle {\ frac {\ partial u} {\ partial t}} + u {\ frac {\ partial u} {\ partial x}} = \ nu {\ frac {\ partial ^ {2} u} {\ partial x ^ {2}}}} {\ displaystyle {\ frac {\ partial u} {\ partial t}} + u {\ frac {\ partial u} {\ partial x}} = \ nu {\ frac {\ partial ^ {2} u} {\ partial x ^ {2}}}} .

If the effect of viscosity can be neglected, i.e.ν=0 {\ displaystyle \ nu = 0} {\ displaystyle \ nu = 0} , the equation takes the form:

∂u∂t+u∂u∂x=0{\ displaystyle {\ frac {\ partial u} {\ partial t}} + u {\ frac {\ partial u} {\ partial x}} = 0} {\ displaystyle {\ frac {\ partial u} {\ partial t}} + u {\ frac {\ partial u} {\ partial x}} = 0} .

In this case, we obtain the Hopf equation — the quasilinear transport equation — the simplest equation describing discontinuous flows or flows with shock waves .

If aν {\ displaystyle \ nu} \ nu materially and not equal0 {\ displaystyle 0} {\ displaystyle 0} , the equation reduces to the caseν=one {\ displaystyle \ nu = 1} \ nu = 1 : forν<0 {\ displaystyle \ nu <0} {\ displaystyle \ nu <0} need to make a replacement firstu→-u {\ displaystyle u \ to -u} {\ displaystyle u \ to -u} ,x→-x {\ displaystyle x \ to -x} {\ displaystyle x \ to -x} , and for any signν {\ displaystyle \ nu} \ nu :u→|ν|u {\ displaystyle u \ to {\ sqrt {| \ nu |}} \, u} {\ displaystyle u \ to {\ sqrt {| \ nu |}} \, u} ,x→|ν|x {\ displaystyle x \ to {\ sqrt {| \ nu |}} \, x} {\ displaystyle x \ to {\ sqrt {| \ nu |}} \, x} .

The Burgers equation can be linearized by the Hopf-Cole transform. For this (atν=one {\ displaystyle \ nu = 1} \ nu = 1 ) you need to make a replacement function:

u=∂ln⁡w∂x=wx/w{\ displaystyle u = {\ frac {\ partial \ ln w} {\ partial x}} = w_ {x} / w} {\ displaystyle u = {\ frac {\ partial \ ln w} {\ partial x}} = w_ {x} / w} .

In this case, the solutions of the Burgers equation are reduced to positive solutions of the linear heat equation :

u(x,t)=2∂∂xln⁡{(fourπt)-one/2∫-∞∞exp⁡[-(x-x′)2fourt-one2∫0x′u(x″,0)dx″]dx′}.{\ displaystyle u (x, t) = 2 {\ frac {\ partial} {\ partial x}} \ ln {\ Bigl \ {} (4 \ pi t) ^ {- 1/2} \ int _ {- \ infty} ^ {\ infty} \ exp {\ Bigl [} - {\ frac {(x-x ') ^ {2}} {4t}} - {\ frac {1} {2}} \ int _ { 0} ^ {x '} u (x``, 0) dx' '{\ Bigr]} dx' {\ Bigr \}}.} {\ displaystyle u (x, t) = 2 {\ frac {\ partial} {\ partial x}} \ ln {\ Bigl \ {} (4 \ pi t) ^ {- 1/2} \ int _ {- \ infty} ^ {\ infty} \ exp {\ Bigl [} - {\ frac {(x-x ') ^ {2}} {4t}} - {\ frac {1} {2}} \ int _ { 0} ^ {x '} u (x``, 0) dx' '{\ Bigr]} dx' {\ Bigr \}}.}

See also

  • Kuramoto-Sivashinsky equation

Links

  • Burgers' Equation at EqWorld: The World of Mathematical Equations.
Source - https://en.wikipedia.org/w/index.php?title=Burgers_ Equation&oldid = 93366849


More articles:

  • Geyhart, Rebecca
  • Fipa
  • Nitel
  • Grammar School № 56 (Saint Petersburg)
  • Lepsy (river)
  • Bibina, Tatyana Nikolaevna
  • Uaca
  • Art Deco
  • Okuma Shigenobu
  • Zinoviev, Ivan Ivanovich

All articles

Clever Geek | 2019