Clever Geek Handbook
📜 ⬆️ ⬇️

Wand (flat curve)

Wand curve

The Rod is a flat transcendental curve defined by the equation (in the polar coordinate system):

ρ=aφ{\ displaystyle \ rho = {\ frac {a} {\ sqrt {\ varphi}}}} {\ displaystyle \ rho = {\ frac {a} {\ sqrt {\ varphi}}}} ,

Whereα {\ displaystyle \ alpha} \ alpha - some constant constant.

It is a special case of the Archimedean spiral.ρ=αϕone/n {\ displaystyle \ rho = \ alpha \ phi ^ {1 / n}} {\ displaystyle \ rho = \ alpha \ phi ^ {1 / n}} atn=-2 {\ displaystyle n = -2} n = -2 .

The calculation of the curvature of the spiral and the angle of inclination of the tangent are performed by the formulas:

κ(ϕ)=(eightϕ2-2)(ϕone+fourϕ2)3/2{\ displaystyle \ kappa (\ phi) = (8 \ phi ^ {2} -2) {\ biggl (} {\ frac {\ phi} {1 + 4 \ phi ^ {2}}} {\ biggr)} ^ {3/2}} {\ displaystyle \ kappa (\ phi) = (8 \ phi ^ {2} -2) {\ biggl (} {\ frac {\ phi} {1 + 4 \ phi ^ {2}}} {\ biggr)} ^ {3/2}}

τ(ϕ)=ϕ-tan-one⁡(2ϕ){\ displaystyle \ tau (\ phi) = \ phi - \ tan ^ {- 1} (2 \ phi)} {\ displaystyle \ tau (\ phi) = \ phi - \ tan ^ {- 1} (2 \ phi)} [one]

The curve tends from infinity (where it asymptotically approaches the horizontal axis) to the point(0;0) {\ displaystyle (0; 0)} (0; 0) spinning around it in a spiral counterclockwise. The size of the spiral is determined by the coefficienta {\ displaystyle a} a . It has one inflection point -(one2;a2) {\ displaystyle \ textstyle \ left ({\ frac {1} {2}}; a {\ sqrt {2}} \ right)} {\ displaystyle \ textstyle \ left ({\ frac {1} {2}}; a {\ sqrt {2}} \ right)} .

The curve refers to algebraic spirals .

Content

History

The curve was named by the ancient Romans with a rod and described by Roger Cots in a collection of works entitled Harmonic Measurements (Harmonia Mensurarum) (1722), published 6 years after his death.

Notes

  1. ↑ Weisstein, Eric W. Lituus (English) on Wolfram MathWorld .

Links

  • Interactive Curve Visualization with JSXGraph

see also

Spiral

Source - https://ru.wikipedia.org/w/index.php?title=Weather_ ( flat_cryvaya )&oldid = 97704673


More articles:

  • Rio Brillanti
  • Saleti
  • São Goncalo do Rio Preto
  • Sao Jeronimo da Serra
  • Sao Jose do Peixi
  • Sao Sebastien do Paraiso
  • Tupanatinga
  • United Socialist Workers Party (Brazil)
  • Magnus IV the Blind
  • Garlic

All articles

Clever Geek | 2019