Clever Geek Handbook
📜 ⬆️ ⬇️

Trace (field theory)

Trace ( eng. Trace ) - displaying the elements of a finite field extensionE⊃K {\ displaystyle E \ supset K} E \ supset K in the original field K , defined as follows:

Let E be a finite extension of degree Kn=[E:K] {\ displaystyle n = [E: K]} n = [E: K] ,α∈E {\ displaystyle \ alpha \ in E} \ alpha \ in E Is an element of the field E. Since E is a vector space over the field K , this element defines a linear transformationx↦αx {\ displaystyle x \ mapsto \ alpha x} x \ mapsto \ alpha x . A matrix can be associated with this transformation in some basis. The trace of this matrix is ​​called the trace of the element α . Since in a different basis a similar matrix with the same trace will correspond to this mapping, the trace does not depend on the choice of basis, that is, each trace element is uniquely associated with its trace. It is designatedTrKE(α) {\ displaystyle {\ text {Tr}} _ {K} ^ {E} (\ alpha)} {\ text {Tr}} _ {K} ^ {E} (\ alpha) or, if it’s clear what kind of extension it’sTr(α) {\ displaystyle {\ text {Tr}} (\ alpha)} {\ text {Tr}} (\ alpha) .

Content

  • 1 Trace Properties
  • 2 Expression of a trace in terms of automorphisms E over K
  • 3 Example
  • 4 See also
  • 5 Literature

Trace Properties

  • Tr(α+β)=Tr(α)+Tr(β){\ displaystyle {\ text {Tr}} (\ alpha + \ beta) = {\ text {Tr}} (\ alpha) + {\ text {Tr}} (\ beta)}  
  • Tr(cα)=cTr(α){\ displaystyle {\ text {Tr}} (c \ alpha) = c {\ text {Tr}} (\ alpha)}   atc∈K {\ displaystyle c \ in K}  
  • If E is a separable extension , thenTrKE {\ displaystyle {\ text {Tr}} _ {K} ^ {E}}   - nonzero functional, if inseparable, thenTrKE=0 {\ displaystyle {\ text {Tr}} _ {K} ^ {E} = 0}   .
  • The trace is transitive, i.e. for the extension chainK⊂E⊂F {\ displaystyle K \ subset E \ subset F}   we haveTrKE(TrEF(α))=TrKF(α) {\ displaystyle {\ text {Tr}} _ {K} ^ {E} ({\ text {Tr}} _ {E} ^ {F} (\ alpha)) = {\ text {Tr}} _ {K } ^ {F} (\ alpha)}  
  • IfE=K(α) {\ displaystyle E = K (\ alpha)}   Is a simple algebraic extension andf(x)=xn+an-onexn-one+...+aonex+a0 {\ displaystyle f (x) = x_ {n} + a ^ {n-1} x_ {n-1} + ... + a_ {1} x + a_ {0}}   Is the minimal polynomial α, thenTrKE(α)=-an-one {\ displaystyle {\ text {Tr}} _ {K} ^ {E} (\ alpha) = - a_ {n-1}}  

Expression of a trace through automorphisms E over K

Let σ 1 , σ 2 ... σ m be all automorphisms of E leaving the elements of K fixed. If E is separable, then m is equal to the degree of [E: K] = n . Then for the trace there is the following expression:

TrKE(α)=σone(α)+σone(α)+...+σm(α){\ displaystyle {\ text {Tr}} _ {K} ^ {E} (\ alpha) = \ sigma _ {1} (\ alpha) + \ sigma _ {1} (\ alpha) + \ ldots + \ sigma _ {m} (\ alpha)}  

If E is inseparable then m ≠ n , but n is a multiple of m , and the quotient is a power of characteristic p: n = p i m .

ThenTrKE(α)=(σone(α)+σone(α)+...+σm(α))m/n {\ displaystyle {\ text {Tr}} _ {K} ^ {E} (\ alpha) = (\ sigma _ {1} (\ alpha) + \ sigma _ {1} (\ alpha) + \ ldots + \ sigma _ {m} (\ alpha)) ^ {m / n}}  

Example

Let K be the field of real numbers , and E the field of complex numbers . Then the trace of the numbera+bi {\ displaystyle a + bi}   is equal to2a {\ displaystyle 2a}   . The trace of a complex number can be calculated by the formulaTrz=z+z¯ {\ displaystyle {\ text {Tr}} \; z = z + {\ bar {z}}}   , and this is in good agreement with the fact that complex conjugation is the only automorphism of the field of complex numbers.

See also

  • Norm (field theory)

Literature

  • Van der Waerden B. L. Algebra-M :, Science, 1975
  • Zarissky O. , Samuel P. Commutative Algebra Vol. 1-M :, IL, 1963
  • Leng S. Algebra-M :, World, 1967
Source - https://ru.wikipedia.org/w/index.php?title=Next_(field_theory)&oldid=101245310


More articles:

  • Mullenhof, Karl Victor
  • French Institute of the Far East
  • Jurassic Park (film)
  • Svyatogorsk Assumption Monastery (Pushkin Mountains)
  • Firstborn (film)
  • Volkhov Front
  • Mikhailovsky (museum reserve)
  • Ethan Frome (film)
  • John's Gate
  • Gash Barca

All articles

Clever Geek | 2019