Clever Geek Handbook
📜 ⬆️ ⬇️

Pfaffian

A Pfaffian of a skew - symmetric matrix is a polynomial in its elements whose square is equal to the determinant of this matrix. Like the determinant, Pfaffian is nonzero only for skew-symmetric matrices of size2n×2n {\ displaystyle 2n \ times 2n} 2n \ times 2n , and in this case its degree is n .

Examples

Pf[0a-a0]=a.{\ displaystyle {\ mbox {Pf}} {\ begin {bmatrix} 0 & a \\ - a & 0 \ end {bmatrix}} = a.}  
Pf[0abc-a0de-b-d0f-c-e-f0]=af-be+dc.{\ displaystyle {\ mbox {Pf}} {\ begin {bmatrix} 0 & a & b & c \\ - a & 0 & d & e \\ - b & -d & 0 & f \\ - c & -e & -f & 0 \ end {bmatrix}} = af-be + dc.}  
Pf[0λone00⋯00-λone000⋯00000λ2⋯0000-λ20⋯00⋮⋮⋮⋮⋱⋮⋮0000⋯0λn0000⋯-λn0]=λoneλ2⋯λn.{\ displaystyle {\ mbox {Pf}} {\ begin {bmatrix} 0 & \ lambda _ {1} & 0 & 0 & \ cdots & 0 & 0 \\ - \ lambda _ {1} & 0 & 0 & 0 & \ cdots & 0 & 0 \\ 0 & 0 & 0 & \ lambda _ {2} & \ cdots & 0 & 0 \\ 0 & 0 & - \ lambda _ {2} & 0 & \ cdots & 0 & 0 \\\ vdots & \ vdots & \ vdots & \ vdots & \ ddots & \ vdots & \ vdots \\ 0 & 0 & 0 & 0 & \ cdots & 0 & \ lambda _ {n } \\ 0 & 0 & 0 & 0 & \ cdots & - \ lambda _ {n} & 0 \ end {bmatrix}} = \ lambda _ {1} \ lambda _ {2} \ cdots \ lambda _ {n}.}  

Definition

Let beΠ {\ displaystyle \ Pi}   denotes the set of all partitions of the set{one,2,...,2n} {\ displaystyle \ {1,2, \ dots, 2n \}}   unordered pairs (total exists(2n-one)!! {\ displaystyle (2n-1) !!}   such partitions). Breaking upα∈Π {\ displaystyle \ alpha \ in \ Pi}   can be recorded

α={(ione,jone),(i2,j2),⋯,(in,jn)}{\ displaystyle \ alpha = \ {(i_ {1}, j_ {1}), (i_ {2}, j_ {2}), \ cdots, (i_ {n}, j_ {n}) \}}  

Whereik<jk {\ displaystyle i_ {k} <j_ {k}}   andione<i2<⋯<in {\ displaystyle i_ {1} <i_ {2} <\ cdots <i_ {n}}   . Let be

π=[one23four⋯2nionejonei2j2⋯jn]{\ displaystyle \ pi = {\ begin {bmatrix} 1 & 2 & 3 & 4 & \ cdots & 2n \\ i_ {1} & j_ {1} & i_ {2} & j_ {2} & \ cdots & j_ {n} \ end {bmatrix}}}  

denotes the corresponding permutation , andsgn(α) {\ displaystyle {\ mbox {sgn}} (\ alpha)}   - permutation signπ {\ displaystyle \ pi}   . It is easy to see thatsgn(α) {\ displaystyle {\ mbox {sgn}} (\ alpha)}   independent of choiceπ {\ displaystyle \ pi}   .

Let beA={aij} {\ displaystyle A = \ {a_ {ij} \}}   denotes2n × 2 n {\ displaystyle 2n \ times 2n}   skew-symmetric matrix. For splittingα {\ displaystyle \ alpha}   define

Aα=sgn⁡(α)aione,joneai2,j2⋯ain,jn.{\ displaystyle A _ {\ alpha} = \ operatorname {sgn} (\ alpha) a_ {i_ {1}, j_ {1}} a_ {i_ {2}, j_ {2}} \ cdots a_ {i_ {n} , j_ {n}}.}  

Now we can define the Pfaffian of the matrix A as

Pf⁡(A)=∑α∈ΠAα.{\ displaystyle \ operatorname {Pf} (A) = \ sum _ {\ alpha \ in \ Pi} A _ {\ alpha}.}  

Pfaffian skew-symmetric matrix sizen×n {\ displaystyle n \ times n}   for odd n is equal to zero by definition.

Recursive Definition

Pfaffian size matrix0×0 {\ displaystyle 0 \ times 0}   set equal to 1; Pfaffian of a skew-symmetric matrix A of size2n×2n {\ displaystyle 2n \ times 2n}   atn>0 {\ displaystyle n> 0}   can be defined recursively as follows:

Pf⁡(A)=∑j=onej≠i2n(-one)i+j+one+θ(i-j)aijPf⁡(Aı^ȷ^),{\ displaystyle \ operatorname {Pf} (A) = \ sum _ {{j = 1} \ atop {j \ neq i}} ^ {2n} (- 1) ^ {i + j + 1 + \ theta (ij )} a_ {ij} \ operatorname {Pf} (A _ {{\ hat {\ imath}} {\ hat {\ jmath}}},}  

where is the indexi {\ displaystyle i}   can be chosen arbitrarilyθ(i-j) {\ displaystyle \ theta (ij)}   - Heaviside function ,Aı^ȷ^ {\ displaystyle A _ {{\ hat {\ imath}} {\ hat {\ jmath}}}}   denotes a matrix A without the ith and jth columns and rows.

Alternative Definition

For2n×2n {\ displaystyle 2n \ times 2n}   skew-symmetric matrixA={aij} {\ displaystyle A = \ {a_ {ij} \}}   consider the bivector :

ω=∑i<jaijei∧ej.{\ displaystyle \ omega = \ sum _ {i <j} a_ {ij} \; e_ {i} \ wedge e_ {j}.}  

Where{eone,e2,...,e2n} {\ displaystyle \ {e_ {1}, e_ {2}, \ dots, e_ {2n} \}}   there is a standard basis inR2n {\ displaystyle \ mathbb {R} ^ {2n}}   . Then Pfaffian is defined by the following equation:

onen!ω∧n=Pf(A)eone∧e2∧⋯∧e2n,{\ displaystyle {\ frac {1} {n!}} \ omega ^ {\ wedge n} = {\ mbox {Pf}} (A) \; e_ {1} \ wedge e_ {2} \ wedge \ dots \ wedge e_ {2n},}  

Whereω∧n {\ displaystyle \ omega ^ {\ wedge n}}   denotes the outer product of n copiesω {\ displaystyle \ omega}   .

Properties

For2n×2n {\ displaystyle 2n \ times 2n}   skew-symmetric matrixA {\ displaystyle A}   and for arbitrary2n×2n {\ displaystyle 2n \ times 2n}   matricesB {\ displaystyle B}   :

  • Pf(A)2=det(A){\ displaystyle {\ mbox {Pf}} (A) ^ {2} = \ det (A)}  
  • Pf(BABT)=det(B)Pf(A){\ displaystyle {\ mbox {Pf}} (BAB ^ {T}) = \ det (B) {\ mbox {Pf}} (A)}  
  • Pf(λA)=λnPf(A){\ displaystyle {\ mbox {Pf}} (\ lambda A) = \ lambda ^ {n} {\ mbox {Pf}} (A)}  
  • Pf(AT)=(-one)nPf(A){\ displaystyle {\ mbox {Pf}} (A ^ {T}) = (- 1) ^ {n} {\ mbox {Pf}} (A)}  
  • For the block diagonal matrix
Pf[Aone00A2]=Pf(Aone)Pf(A2).{\ displaystyle {\ mbox {Pf}} {\ begin {bmatrix} A_ {1} & 0 \\ 0 & A_ {2} \ end {bmatrix}} = {\ mbox {Pf}} (A_ {1}) {\ mbox {Pf}} (A_ {2}).}  
  • For arbitraryn×n {\ displaystyle n \ times n}   matricesM {\ displaystyle M}   :
Pf[0M-MT0]=(-one)n(n-one)/2detM.{\ displaystyle {\ mbox {Pf}} {\ begin {bmatrix} 0 & M \\ - M ^ {T} & 0 \ end {bmatrix}} = (- 1) ^ {n (n-1) / 2} \ det M.}  

History

The term “Pfaffian” was introduced by Cayley [1] and named after the German mathematician Johann Friedrich Pfaff .

Notes

  1. ↑ Earliest Known Uses of Some of the Words of Mathematics

Literature

  • Sluggish MN Pfaffians for enumeration problems // Summer School "Contemporary Mathematics". - 2004.
  • Sluggish MN Pfaffians or the art of placing signs ... // Mathematical Education . - 2005. - No. 9 .
Source - https://ru.wikipedia.org/w/index.php?title=Pfaffian&oldid=100973442


More articles:

  • Singles (1992 film)
  • Yajnavaraha
  • Vatican Economy
  • Guess Yarman I
  • Cities and Towns of Eritrea
  • Megaville
  • Albania at Eurovision 2008
  • Ramene (Borovenkovskoe rural settlement)
  • Stalin (film)
  • Management Object

All articles

Clever Geek | 2019