Clever Geek Handbook
📜 ⬆️ ⬇️

Count Cayley

Count Cayley - a graph that is built on a group with a dedicated system of generators. Named after Arthur Cayley .

Definition

Let a discrete group be givenG {\ displaystyle G} G and system of generatorsS {\ displaystyle S} S .

SupposeS=S-one {\ displaystyle S = S ^ {- 1}} S=S^{{-1}} , that is, for eachs∈S,∃s-one∈S {\ displaystyle s \ in S, \ exists s ^ {- 1} \ in S} s\in S,\exists s^{{-1}}\in S .

Earl Cayley GroupG {\ displaystyle G} G according to the system of generatorsS {\ displaystyle S} S is a graph whose vertices are the elements of the group and the elementg {\ displaystyle g} g connected by an edge exactly with those elements that are obtained by multiplicationg {\ displaystyle g} g per element fromS {\ displaystyle S} S .

Note: In caseS≠S-one {\ displaystyle S \ not = S ^ {- 1}} S\not =S^{{-1}} insteadS {\ displaystyle S} S take a poolS∪S-one {\ displaystyle S \ cup S ^ {- 1}} S\cup S^{{-1}} .

Examples

  • Cayley graph of a free group with two generators a and b

  • Count Cayley free artworkZ2∗Z3 {\ displaystyle \ mathbb {Z} _ {2} * \ mathbb {Z} _ {3}} \mathbb{Z } _{2}*\mathbb{Z } _{3}

  • Count Cayley direct artworkZ2×Z3 {\ displaystyle \ mathbb {Z} _ {2} \ times \ mathbb {Z} _ {3}}  

See also

  • Pythagoras tree
Source - https://ru.wikipedia.org/w/index.php?title=Graphy_Caley&oldid=86265007


More articles:

  • The Corpse of My Enemy (film)
  • Ippolitov, Platon Afanasyevich
  • Chateaudon (castle)
  • Emmanuel 2
  • Aze le Rideau Castle
  • Three days of Condor
  • Luminosity
  • Music of Moldova
  • Kier, Nikolai
  • Klet Karl

All articles

Clever Geek | 2019