Clever Geek Handbook
📜 ⬆️ ⬇️

Gauss Formula

The Gauss formula (Gaussian relation, Gaussian equation) is an expression for the Gaussian curvature of a surface in three-dimensional Riemannian space in terms of the principal curvatures and the sectional curvature of the ambient space. In particular, if the ambient space is Euclidean, then the Gaussian curvature of the surface is equal to the product of the principal curvatures at this point.

Content

Wording

Let beS {\ displaystyle S}   - two-dimensional surface in three-dimensional Riemannian spaceM {\ displaystyle M}   . Then

KS(x)=KM(σS(x))+κone(x)κ2(x),{\ displaystyle K_ {S} (x) = K_ {M} (\ sigma _ {S} (x)) + \ kappa _ {1} (x) \ kappa _ {2} (x),}  

Where

  • KS{\ displaystyle K_ {S}}   - Gaussian surface curvatureS {\ displaystyle S}   at the pointx∈S {\ displaystyle x \ in S}   ,
  • KM(σS(x)){\ displaystyle K_ {M} (\ sigma _ {S} (x))}   - sectional curvature of spaceM {\ displaystyle M}   in the directionσS(x) {\ displaystyle \ sigma _ {S} (x)}   tangent to the surfaceS {\ displaystyle S}   at the pointx {\ displaystyle x}   ,
  • κone(x){\ displaystyle \ kappa _ {1} (x)}   ,κ2(x) {\ displaystyle \ kappa _ {2} (x)}   - main surface curvaturesS {\ displaystyle S}   at the pointx. {\ displaystyle x.}  

Generalization to large dimensions

The formula can be generalized to an arbitrary dimension and codimension of an embedded submanifoldS⊂M {\ displaystyle S \ subset M}   . In this case, the curvature tensorRS {\ displaystyle R_ {S}}   submanifoldsS {\ displaystyle S}   expressed through the contraction of the curvature tensorRM {\ displaystyle R_ {M}}   of spaceM {\ displaystyle M}   subspace tangent toS {\ displaystyle S}   and the second quadratic formqS {\ displaystyle q_ {S}}   submanifoldsS {\ displaystyle S}   on tangent spaceTS {\ displaystyle TS}   with values ​​in normal space toS {\ displaystyle S}   :

⟨RS(X,Y)Z,W⟩=⟨RM(X,Y)Z,W⟩+⟨qS(Y,W),qS(X,Z)⟩-⟨qS(X,W),qS(Y,Z)⟩.{\ displaystyle \ langle R_ {S} (X, Y) Z, W \ rangle = \ langle R_ {M} (X, Y) Z, W \ rangle + \ langle q_ {S} (Y, W), q_ {S} (X, Z) \ rangle - \ langle q_ {S} (X, W), q_ {S} (Y, Z) \ rangle.}   [one]

It should be borne in mind that different authors determine the curvature tensor with a different sign and order of arguments.

See also

  • Gauss Formula - Bonn

Notes

  1. ↑ Postnikov M.M. Rimanova, Geometry M .: Factorial, 1998, p. 337.

Literature

  • 1. Postnikov M. M. Rimanova Geometry M .: Factorial, 1998, p. 337.
  • 2. Kobayashi Sh. , Nomizu K. Fundamentals of differential geometry M .: Nauka, 1981, T. 2, p. 30.
Source - https://ru.wikipedia.org/w/index.php?title=Gauss Formula&oldid = 98392962


More articles:

  • Zhuravlevka (Saratov Region)
  • Braga County Municipalities
  • Viseu County Municipalities
  • Miltiad the Younger
  • Severe style
  • Baikonur (subway station)
  • Fridubald
  • Stanke, Martin
  • Igdir
  • Ortelius, Abraham

All articles

Clever Geek | 2019