Clever Geek Handbook
📜 ⬆️ ⬇️

Bernoulli Law

Figure from D. Bernoulli 's “Hydrodynamics”: due to the flow through the pipe, which compensates for the flow through the right hole O, the pressure in the pipe is less than in the vessel on the left.

The Bernoulli law [1] (also the Bernoulli equation [2] [3] , the Bernoulli theorem [4] [5], or the Bernoulli integral [2] [6] [7] ) establishes the relationship between the stationary fluid flow rate and its pressure . According to this law, if along the flow line the fluid pressure increases, then the flow velocity decreases, and vice versa. The quantitative expression of the law in the form of the Bernoulli integral is the result of the integration of the hydrodynamic equations of an ideal fluid [2] (that is, without viscosity and thermal conductivity ).

History

For the case of an incompressible fluid, a result equivalent to the modern Bernoulli equation was published in 1738 by Daniel Bernoulli [K 1] . In its modern form, the integral was published by Johann Bernoulli in 1743 [11] for the case of an incompressible fluid, and for some cases of compressible fluid flows by Euler in 1757 [12] .

Bernoulli integral in incompressible fluid

Total pressure
DimensionL-oneMT-2{\ displaystyle L ^ {- 1} MT ^ {- 2}} {\displaystyle L^{-1}MT^{-2}}
Units
SIJ / m 3 = Pa
GHSerg / cm 3
Notes
Constantly along the streamline of the stationary flow of an incompressible fluid .

For the stationary flow of an incompressible fluid, the Bernoulli equation can be obtained as a consequence of the law of conservation of energy . Bernoulli's law states that the magnitudeρv2/2+ρgh+p {\ displaystyle \ rho v ^ {2} / 2 + \ rho gh + p} {\displaystyle \rho v^{2}/2+\rho gh+p} keeps a constant value along the streamline:

ρv22+ρgh+p=const.{\ displaystyle {\ frac {\ rho v ^ {2}} {2}} + \ rho gh + p = {\ text {const}}.} {\displaystyle {\frac {\rho v^{2}}{2}}+\rho gh+p={\text{const}}.}

Here

ρ{\ displaystyle \ rho}   - fluid density ;
v{\ displaystyle v}   - flow rate ;
h{\ displaystyle h}   - height;
p{\ displaystyle p}   - pressure ;
g{\ displaystyle g}   - acceleration of gravity .
An elementary derivation of the Bernoulli equation from the law of conservation of energy
 

An elementary derivation of the Bernoulli equation from the energy conservation law is given, for example, in the textbook of D. V. Sivukhin [13] . The stationary motion of the fluid along the streamline shown in the figure is considered. Left to the volume of fluid originally enclosed between two sectionsAone {\ displaystyle A_ {1}}   andA2 {\ displaystyle A_ {2}}   force is actingFone=poneAone {\ displaystyle F_ {1} = p_ {1} A_ {1}}   and on the right - in the opposite directionF2=-p2A2 {\ displaystyle F_ {2} = - p_ {2} A_ {2}}   . Speedv {\ displaystyle v}   and pressurep {\ displaystyle p}   in sections 1 and 2, as well as their areas are indicated by the lower indices 1 and 2. For an infinitely short timeΔt {\ displaystyle \ Delta t}   the left boundary of this volume of fluid has shifted a small distancesone=voneΔt {\ displaystyle s_ {1} = v_ {1} \ Delta t}   and the right one is at a distances2=v2Δt {\ displaystyle s_ {2} = v_ {2} \ Delta t}   . Work done by pressure is equal to:

W=Fonesone+F2s2=Δt(voneAonepone-v2A2p2).{\ displaystyle W = F_ {1} s_ {1} + F_ {2} s_ {2} = \ Delta t \ left (v_ {1} A_ {1} p_ {1} -v_ {2} A_ {2} p_ {2} \ right).}  

At the beginning of the time intervalΔt {\ displaystyle \ Delta t}   fluid volume enclosed between two surfacesAone {\ displaystyle A_ {1}}   andA2 {\ displaystyle A_ {2}}   , consists of the left blue element and the middle blue part, at the end of this interval, the displaced volume consists of the middle blue part and the right blue element. Since the flow is stationary, the contribution of the blue fragment to the energy and mass of the discussed volume of liquid does not change, and the conservation of mass allows us to conclude that the mass of the left blue element is equal to the mass of the right blue element:Δm=ΔtvoneAoneρone=Δtv2A2ρ2. {\ displaystyle \ Delta m = \ Delta tv_ {1} A_ {1} \ rho _ {1} = \ Delta tv_ {2} A_ {2} \ rho _ {2}.}   . Therefore, the work of forces, the expression for which can be converted to:ΔW=Δm(poneρone-p2ρ2), {\ displaystyle \ Delta W = \ Delta m \ left ({\ frac {p_ {1}} {\ rho _ {1}}} - {\ frac {p_ {2}} {\ rho _ {2}}} \ right),}   equal to the change in energy, equal, in turn, to the energy difference of the right blue elementΔE2 {\ displaystyle \ Delta E_ {2}}   and left blue elementΔEone {\ displaystyle \ Delta E_ {1}}   .

For an incompressible fluid, it is possible, firstly, to putρone=ρ2=ρ {\ displaystyle \ rho _ {1} = \ rho _ {2} = \ rho}   and secondly, in the expression for the energy of the liquid element, we restrict ourselves to the kinetic and potential energy:ΔEone=Δm(vone22+ghone), {\ displaystyle \ Delta E_ {1} = \ Delta m \ left ({\ frac {v_ {1} ^ {2}} {2}} + gh_ {1} \ right),}  ΔE2=Δm(v222+gh2). {\ displaystyle \ Delta E_ {2} = \ Delta m \ left ({\ frac {v_ {2} ^ {2}} {2}} + gh_ {2} \ right).}   After this equalityΔW=ΔE2-ΔEone {\ displaystyle \ Delta W = \ Delta E_ {2} - \ Delta E_ {1}}   gives:pone+ρghone+ρvone22=p2+ρgh2+ρv222 {\ displaystyle p_ {1} + \ rho gh_ {1} + {\ frac {\ rho v_ {1} ^ {2}} {2}} = p_ {2} + \ rho gh_ {2} + {\ frac {\ rho v_ {2} ^ {2}} {2}}}   , orp+ρgh+ρv22=const {\ displaystyle p + \ rho gh + {\ frac {\ rho v ^ {2}} {2}} = {\ rm {const}}}   .

The constant on the right-hand side (may vary for different streamlines) is sometimes called total pressure [2] . The terms “weight pressure” may also be used.ρgh {\ displaystyle \ rho gh}   , "Static pressure"p {\ displaystyle p}   and "dynamic pressure"ρv2/ 2 {\ displaystyle \ rho v ^ {2} / 2}   . According to D. V. Sivukhin [13] , the irrationality of these concepts was noted by many physicists.

The dimension of all terms is a unit of energy per unit volume. The first and second terms in the Bernoulli integral have the meaning of the kinetic and potential energy per unit volume of the liquid. The third term in its origin is the work of pressure forces (see the above conclusion of the Bernoulli equation), but in hydraulics it can be called the “pressure energy” and part of the potential energy [14] ).

Derivation of the Torricelli Formula from Bernoulli's Law

 
Torricelli Formula Illustration

As applied to the flow of an ideal incompressible fluid through a small hole in the side wall or the bottom of a wide vessel, Bernoulli's law gives the equality of the total pressures on the free surface of the liquid and at the exit of the hole:

ρgh+p0=ρv22+p0,{\ displaystyle \ rho gh + p_ {0} = {\ frac {\ rho v ^ {2}} {2}} + p_ {0},}  

Where

h{\ displaystyle h}   - the height of the liquid column in the vessel, counted from the level of the hole,
v{\ displaystyle v}   - fluid flow rate,
p0{\ displaystyle p_ {0}}   - atmospheric pressure .

From here:v=2gh {\ displaystyle v = {\ sqrt {2gh}}}   . This is the Torricelli formula . It shows that when the fluid expires, it acquires the speed that a body would freely fall from a heighth {\ displaystyle h}   . Or, if the jet flowing from a small hole in a vessel is directed upward, at the upper point (neglecting losses), the jet will reach the level of the free surface in the vessel [15] .

Other manifestations and applications of Bernoulli's law

 
Bernoulli's law explains the Venturi effect : in the narrow part of the pipe, the fluid flow rate is higher and the pressure is less than in the wide

The incompressible fluid approximation, and with it the Bernoulli law, is also valid for laminar gas flows, provided that the flow velocities are small compared to the speed of sound [16] .

Coordinate along the horizontal pipez {\ displaystyle z}   constant and the Bernoulli equation takes the formρv22+p=const {\ displaystyle {\ frac {\ rho v ^ {2}} {2}} + p = {\ text {const}}}   . It follows that with a decrease in the flow cross section due to an increase in velocity, the pressure decreases. The effect of pressure reduction with increasing flow rate is the basis for the operation of a Venturi flow meter [17] and a jet pump [1] .

Bernoulli’s law explains why ships traveling in a parallel course can be attracted to each other (for example, such an incident occurred with the Olympic liner) [18] .

Hydraulic Application

The consistent application of Bernoulli's law led to the emergence of a technical hydromechanical discipline - hydraulics . For technical applications, the Bernoulli equation is often written in the form in which all terms are divided by “ specific gravity ”ρg {\ displaystyle \ rho g}   :

H=h+pρg+v22g=const,{\ displaystyle H = h + {\ frac {p} {\ rho g}} + {\ frac {v ^ {2}} {2g}} = {\ text {const}},}  

where the members of length dimension in this equation may have the following names:

Aggression [19]
DimensionL{\ displaystyle L}  
Units
SImeter
Notes
Total pressure divided by specific gravity .
H{\ displaystyle H}   - hydraulic height [4] or pressure [19] ,
h{\ displaystyle h}   - leveling height [4] ,
pρg{\ displaystyle {\ frac {p} {\ rho g}}}   - piezometric height [4] or (in total with leveling height) hydrostatic pressure [19] ,
v22g{\ displaystyle {\ frac {v ^ {2}} {2g}}}   - speed height [4] or pressure head [19] .

Bernoulli's law is valid only for ideal fluids in which there is no loss of viscous friction . To describe the flows of real liquids in technical hydromechanics (hydraulics), the Bernoulli integral is used with the addition of terms that approximately take into account various “ hydraulic pressure losses ” [19] .

Bernoulli integral in barotropic flows

The Bernoulli equation can also be derived from the equation of fluid motion [K 2] [K 3] . In this case, the flow is assumed to be stationary and barotropic . The latter means that the density of the liquid or gas is not necessarily constant (as in the previously assumed incompressible liquid), but is a function of pressure only:ρ=ρ(p) {\ displaystyle \ rho = \ rho (p)}   that allows you to enter the pressure function [22]P=∫dpρ(p). {\ displaystyle {\ mathcal {P}} = \ int {\ frac {\ mathrm {d} p} {\ rho (p)}}.}   Under these assumptions, the quantity

v22+gh+P=const{\ displaystyle {\ frac {v ^ {2}} {2}} + gh + {\ mathcal {P}} = {\ text {const}}}  

constant along any streamline and any vortex line . The relation is valid for the flow in any potential field , whilegh {\ displaystyle gh}   replaced by mass power potentialφ {\ displaystyle \ varphi}   .

Derivation of the Bernoulli integral for a barotropic flow

The Gromeka – Lamb equation [23] [24] (square brackets denote the vector product ) has the form:

∂v→∂t+grad⁡(v22)+[rotv→,v→]=-oneρgrad⁡p+F→{\ displaystyle {\ frac {\ partial {\ vec {v}}} {\ partial t}} + \ operatorname {grad} \ left ({\ frac {v ^ {2}} {2}} \ right) + \ left [\ mathrm {rot} \, {\ vec {v}}, {\ vec {v}} \ right] = - {\ frac {1} {\ rho}} \ operatorname {grad} p + {\ vec {F}}}  

By virtue of the assumptions made∂v→∂t=0, {\ displaystyle {\ frac {\ partial {\ vec {v}}} {\ partial t}} = 0,}  grad⁡pρ=grad⁡P {\ displaystyle {\ frac {\ operatorname {grad} p} {\ rho}} = \ operatorname {grad} {\ cal {P}}}   andF→=-grad⁡φ {\ displaystyle {\ vec {F}} = - \ operatorname {grad} \ varphi}   (in the particular case of uniform gravity, its potential isφ=gh {\ displaystyle \ varphi = g \, h}   ), so that the Gromeki-Lamb equation takes the form:

grad⁡(v22+φ+P)+[rotv→,v→]=0{\ displaystyle \ operatorname {grad} \ left ({\ frac {v ^ {2}} {2}} + \ varphi + {\ cal {P}} \ right) + \ left [\ mathrm {rot} \, {\ vec {v}}, {\ vec {v}} \ right] = 0}  

The scalar product of this equation by the unit vectorl→=v→v, {\ displaystyle {\ vec {l}} = {\ frac {\ vec {v}} {v}},}   tangent to the streamline, gives:

∂∂l(v22+φ+P)=0{\ displaystyle {\ frac {\ partial} {\ partial l}} \ left ({\ frac {v ^ {2}} {2}} + \ varphi + {\ cal {P}} \ right) = 0}  

since the product of the gradient by the unit vector gives the derivative in the direction∂∂l {\ displaystyle {\ frac {\ partial} {\ partial l}}}   , and the vector product is perpendicular to the direction of speed. Consequently, along the streamlinev22+φ+P=const. {\ displaystyle {\ frac {v ^ {2}} {2}} + \ varphi + {\ cal {P}} = \ mathrm {const}.}   This relation is also valid for a vortex line, the tangent vector to which at each point is directed alongrotv→. {\ displaystyle \ mathrm {rot} \, {\ vec {v}}.}  

For vortex-free barotropic flows, the velocity of which can be expressed as a gradient of the velocity potentialv→=grad⁡ψ {\ displaystyle {\ vec {v}} = \ operatorname {grad} \ psi}   , Bernoulli integral in the form∂ψ∂t+(grad⁡ψ)22+gh+P=const {\ displaystyle {\ frac {\ partial \ psi} {\ partial t}} + {\ frac {\ left (\ operatorname {grad} \ psi \ right) ^ {2}} {2}} + gh + {\ cal {P}} = \ mathrm {const}}   [K 4] is also preserved in non-stationary flows, and the constant on the right-hand side has the same value for the entire flow [25] .

Formula Saint-Venant - Wanzel

If the adiabatic law is satisfied during a perfect gas [26]

p=p0ρ0ργ,ρ=ρ0p0one/γpone/γ,P=-γγ-onep0ρ0[one-(pp0)(γ-one)/γ],{\ displaystyle p = {\ frac {p_ {0}} {\ rho _ {0}}} \ rho ^ {\ gamma}, \ qquad \ rho = {\ frac {\ rho _ {0}} {p_ { 0} ^ {1 / \ gamma}}} p ^ {1 / \ gamma}, \ qquad {\ cal {P}} = - {\ frac {\ gamma} {\ gamma -1}} {\ frac {p_ {0}} {\ rho _ {0}}} \ left [1- \ left ({\ frac {p} {p_ {0}}} \ right) ^ {(\ gamma -1) / \ gamma} \ right],}  

then the Bernoulli equation is expressed as follows [27] (the contribution from gravity can usually be neglected):

v22-γγ-onep0ρ0[one-(pp0)(γ-one)/γ]=const{\ displaystyle {\ frac {v ^ {2}} {2}} - {\ frac {\ gamma} {\ gamma -1}} {\ frac {p_ {0}} {\ rho _ {0}}} \ left [1- \ left ({\ frac {p} {p_ {0}}} \ right) ^ {(\ gamma -1) / \ gamma} \ right] = \ mathrm {const}}   along a streamline or vortex line. Here
γ=CpCV{\ displaystyle \ gamma = {\ frac {C_ {p}} {C_ {V}}}}   Is the adiabatic index of the gas, expressed in terms of heat capacity at constant pressure and at a constant volume,
p,ρ{\ displaystyle p, \ \ rho}   - pressure and gas density,
p0,ρ0{\ displaystyle p_ {0}, \ \ rho _ {0}}   - conditionally selected constants (the same for the entire flow) of pressure and density.

Using the obtained formula, the speed of the gas flowing out of the high-pressure vessel through a small hole is found. Conveniently, the pressure and density of the gas in the vessel, the gas velocity in which is equal to zero, is taken asp0,ρ0, {\ displaystyle p_ {0}, \ \ rho _ {0},}   then the flow rate is expressed through external pressurep {\ displaystyle p}   according to the formula of Saint-Venant - Vancel [28] :

v2=2γγ-onep0ρ0[one-(pp0)(γ-one)/γ].{\ displaystyle v ^ {2} = {\ frac {2 \ gamma} {\ gamma -1}} {\ frac {p_ {0}} {\ rho _ {0}}} left [1- \ left ( {\ frac {p} {p_ {0}}} \ right) ^ {(\ gamma -1) / \ gamma} \ right].}  

Thermodynamics of Bernoulli's Law

From thermodynamics it follows that along the streamline of any stationary flow of an ideal fluid

v22+w+φ=const,s=const,{\ displaystyle {\ frac {v ^ {2}} {2}} + w + \ varphi = {\ text {const}}, \ quad s = {\ text {const}},}  

Wherew {\ displaystyle w}   - enthalpy of unit mass ,φ {\ displaystyle \ varphi}   - gravitational potential (equalgz {\ displaystyle gz}   for uniform gravity)s {\ displaystyle s}   Is the entropy of a unit mass.

Derivation of Bernoulli's law from the Euler equation and thermodynamic relations

1. Euler equation for stationary (∂v→/∂t=0 {\ displaystyle \ partial {\ vec {v}} / \ partial t = 0}   ) the motion of an ideal fluid in the field of gravity [29] has the form

(v→⋅∇)v→=-oneρ∇p+g→,{\ displaystyle ({\ vec {v}} \ cdot \ nabla) {\ vec {v}} = - {\ frac {1} {\ rho}} \ nabla p + {\ vec {g}},}  

where the acceleration of gravity can be expressed through the gravitational potentialg→=-∇φ {\ displaystyle {\ vec {g}} = - \ nabla \ varphi}   (for a uniform fieldφ=gh {\ displaystyle \ varphi = gh}   ), the dot between the vectors in parentheses means their scalar product .

2. The scalar product of this equation by the unit vectorl→=v→v, {\ displaystyle {\ vec {l}} = {\ frac {\ vec {v}} {v}},}   tangent to the streamline gives

∂∂l(v22+φ)=-oneρ∂p∂l,{\ displaystyle {\ frac {\ partial} {\ partial l}} \ left ({\ frac {v ^ {2}} {2}} + \ varphi \ right) = - {\ frac {1} {\ rho }} {\ frac {\ partial p} {\ partial l}},}  

since the product of the gradient by the unit vector gives the derivative in the direction∂∂l. {\ displaystyle {\ frac {\ partial} {\ partial l}}.}  

3. Thermodynamic differential relation

dw=oneρdp+Tds,{\ displaystyle \ mathrm {d} w = {\ frac {1} {\ rho}} \ mathrm {d} p + T \ mathrm {d} s,}  

Wherew {\ displaystyle w}   - enthalpies of unit mass ,T {\ displaystyle T}   - temperature ands {\ displaystyle s}   - entropy of a unit mass, gives

∂w∂l=oneρ∂p∂l+T∂s∂l,{\ displaystyle {\ frac {\ partial w} {\ partial l}} = {\ frac {1} {\ rho}} {\ frac {\ partial p} {\ partial l}} + T {\ frac {\ partial s} {\ partial l}}, \ quad}   so that∂∂l(v22+w+φ)=T∂s∂l. {\ displaystyle {\ frac {\ partial} {\ partial l}} \ left ({\ frac {v ^ {2}} {2}} + w + \ varphi \ right) = T {\ frac {\ partial s} {\ partial l}}.}  

In a stationary flow of an ideal fluid, all particles moving along a given streamline have the same entropy [30] (∂s/∂l=0 {\ displaystyle \ partial s / \ partial l = 0}   ), therefore, along the streamline:

s=const,v22+w+φ=const.{\ displaystyle s = {\ text {const}}, \ quad {\ frac {v ^ {2}} {2}} + w + \ varphi = {\ text {const}}.}  

The Bernoulli integral is used in engineering calculations, including for environments that are very far in their properties from an ideal gas, for example, for water vapor used as a coolant in steam turbines. In this case, the so-called Mollier diagrams can be used, representing the specific enthalpy (along the ordinate ) as a function of specific entropy (along the abscissa ) and, for example, pressure (or temperature) in the form of a family of isobars ( isotherms ). In this case, the sequence of states along the streamline lies on some vertical line (s=const {\ displaystyle s = {\ text {const}}}   ) The length of the segment of this line, cut off by two isobars, corresponding to the initial and final coolant pressure, is equal to half the change in the velocity square [31] .

Generalizations of the Bernoulli integral

The Bernoulli integral is also preserved when the flow passes through the front of the shock wave, in the reference frame in which the shock wave is at rest [32] . However, with such a transition, the entropy of the medium does not remain constant (increases); therefore, the Bernoulli relation is only one of the three Hugoniot relations , along with the laws of conservation of mass and momentum, relating the state of the medium behind the front with the state of the medium in front of the front and with the speed of the shock wave.

Generalizations of the Bernoulli integral are known for some classes of viscous fluid flows (for example, for plane-parallel flows [33] ), in magnetic hydrodynamics [34] , and hydrohydrodynamics [35] . In relativistic hydrodynamics, when the flow velocities become comparable to the speed of lightc {\ displaystyle c}   , the integral is formulated in terms of relativistically invariant [36] specific enthalpy and specific entropy [37] .

Comments

  1. ↑ In the record of D. Bernoulli, the internal pressure in the liquid did not explicitly appear [8] [9] [10] .
  2. ↑ “... [Derivation of the Bernoulli theorem from the energy equation] impoverishes the content of the Bernoulli theorem ... The Bernoulli integral, generally speaking, does not depend on the energy equation, although it really coincides with it for the isentropic and adiabatic motion of a perfect gas” [20] .
  3. ↑ “Two ... ways to get the Bernoulli equation are not equivalent. With the energy conclusion, there is no need for the assumption of isentropic flow. When integrating the equation of motion, Bernoulli integrals are obtained not only along streamlines, but also along vortex lines ” [21] .
  4. ↑ In Russian-language literature, the Bernoulli integral for potential flows of an incompressible or barotropic fluid is known as the Cauchy – Lagrange integral [25]

Notes

  1. ↑ 1 2 Landsberg G.S. Bernoulli Law, 1985 .
  2. ↑ 1 2 3 4 Vishnevetsky S. L. Bernoulli equation, 1988 .
  3. ↑ Titens O., Prandtl L. Hydro and aeromechanics, 1933 .
  4. ↑ 1 2 3 4 5 Loytsyansky L.G. Mechanics of liquid and gas, 2003 , §24. Bernoulli's theorem.
  5. ↑ Milne-Thomson L.M. Theoretical Hydrodynamics, 1964 .
  6. ↑ Sedov L.I. Continuum Mechanics, 1970 .
  7. ↑ Black G.G. Gas Dynamics, 1988 .
  8. ↑ Truesdell K. Essays on the History of Mechanics, 2002 .
  9. ↑ Mikhailov G.K. , 1999 , p. 17.
  10. ↑ Darrigol O. A history of hydrodynamics, 2005 , p. 9.
  11. ↑ Truesdell K. Essays on the History of Mechanics, 2002 , p. 255, 257.
  12. ↑ Euler L. Continuation des recherches, 1755 (1757) , p. 331.
  13. ↑ 1 2 Sivukhin D.V. Mechanics, 1989 , §94. Stationary motion of an ideal fluid. Bernoulli equation.
  14. ↑ Chugaev R.R. Hydraulics. - L .: Energy , 1975 .-- 600 p.
  15. ↑ Sivukhin D.V. Mechanics, 1989 , §95. Examples for the application of the Bernoulli equation. Formula Torricelli.
  16. ↑ Sivukhin D.V. Mechanics, 1989 , §94, formula (94.6).
  17. ↑ Molokanov Yu. K. Processes and apparatuses for oil and gas processing . - M .: Chemistry, 1980 .-- S. 60. - 408 p.
  18. ↑ J.I. Perelman . Why are ships attracted? (Russian) . Date of treatment December 27, 2018.
  19. ↑ 1 2 3 4 5 Aggression, 1992 .
  20. ↑ Batchelor J. Introduction to fluid dynamics, 1973 , Note by G. Yu. Stepanova, p. 208.
  21. ↑ Goldstein R.V., Gorodtsov V.A. Mechanics of continuous media, 2000 , p. 104.
  22. ↑ Loitsyansky L.G. Fluid and gas mechanics, 2003 , §23, equation (9).
  23. ↑ Loitsyansky L.G. Fluid and gas mechanics, 2003 , §23, equation (7).
  24. ↑ Sedov L.I. Continuum Mechanics, 1970 , Chapter VIII. §2, equation (2.1).
  25. ↑ 1 2 L. Loitsyansky. Mechanics of liquid and gas, 2003 , §42. Lagrange integral - Cauchy.
  26. ↑ Loitsyansky L.G. Fluid and gas mechanics, 2003 , §24, equation (29).
  27. ↑ L. Loitsyansky, Mechanics of Fluid and Gas, 2003 , §24, equation (30).
  28. ↑ Loitsyansky L.G. Fluid and gas mechanics, 2003 , §24, equation (31).
  29. ↑ Landau L.D., Lifshits E.M. Hydrodynamics, 2001 , Equation (2.4).
  30. ↑ Sedov L.I. Continuum Mechanics, 1970 , Chapter VII. §2. Pressure function.
  31. ↑ Paul R.V. , Mechanics, Acoustics, and the Doctrine of Heat, 2013 , p. 446.
  32. ↑ Landau L.D., Lifshits E.M. Hydrodynamics, 2001 , §85.
  33. ↑ Golubkin V.N., Sizykh G. B. On some general properties of plane-parallel viscous fluid flows // Bulletin of the USSR Academy of Sciences, series Fluid and gas mechanics: journal. - 1987. - No. 3 . - S. 176–178 . - DOI : 10.1007 / BF01051932 .
  34. ↑ Kulikovsky A.G. , Lyubimov G.A. Magnetic hydrodynamics. - M .: Fizmatlit , 1962 .-- S. 54. - 248 p.
  35. ↑ Rosenzweig R. Ferrohydrodynamics / Per. from English under the editorship of V.V. Gogosova. - M .: Mir , 1989 .-- S. 136. - 359 p. - ISBN 5-03-000997-3 .
  36. ↑ Zubarev D.N. , Relativistic thermodynamics, 1994 .
  37. ↑ Landau L.D., Lifshits E.M. Hydrodynamics, 2001 , Equation (134.11).

Literature

  • Batchelor J. Introduction to fluid dynamics / Per. from English under the editorship of G. Yu. Stepanova . - M .: Mir , 1973.- 760 p.
  • Vishnevetsky S. L. Bernoulli equation // Physical Encyclopedia / Ch. ed. A.M. Prokhorov . - M .: Soviet Encyclopedia , 1988. - T. 1: Aaronov-Bohm effect - Long lines. - S. 187. - 704 p.
  • Goldstein R.V. , Gorodtsov V.A. Mechanics of continuous media. Part 1. - M .: Fizmatlit , 2000. - 256 p. - ISBN 5-02-015555-1 .
  • Zubarev, D. N. Relativistic thermodynamics // Physical Encyclopedia / Ch. ed. А. М. Прохоров . — М. : Большая российская энциклопедия , 1994. — Т. 4: Пойнтинга-Робертсона эффект — Стримеры. — С. 333—334. — 704 с. — ISBN 5-85270-087-8 .
  • Ландау, Л. Д. , Лифшиц, Е. М. Гидродинамика. — Издание 5-е, стереотипное. — М. : Физматлит, 2001. — 736 с. — (« Теоретическая физика », том VI). — ISBN 5-9221-0121-8 .
  • Лойцянский Л. Г. Механика жидкости и газа. — М. : Дрофа, 2003. — 842 с. — ISBN 5-7107-6327-6 .
  • Милн-Томсон Л. М. Теоретическая гидродинамика. — М. : Мир , 1964. — 656 с.
  • Михайлов Г. К. Становление гидравлики и гидродинамики в трудах петербургских академиков (XVIII) // Известия Академии наук, серия Механика жидкости и газа : журнал. - 1999. - Vol. 6 . — С. 7–25 .
  • Напор // Физическая энциклопедия / Гл. ed. А. М. Прохоров . — М. : Большая российская энциклопедия , 1992. — Т. 3: Магнитоплазменный компрессор — Пойнтинга теорема. — С. 242. — 672 с. — ISBN 5-85270-019-3 .
  • Поль Р. В. Механика, акустика и учение о теплоте . — Рипол Классик, 2013. — 490 с. — ISBN 5458431251 , 9785458431255.
  • Седов Л. И. Механика сплошной среды . — М. : Наука , 1970. — Т. 2. — 568 с.
  • Сивухин Д. В. Общий курс физики . — Издание 3-е, исправленное и дополненное. — М. : Наука , 1989. — Т. I. Механика. - 576 p. — ISBN 5-02-014054-6 .
  • Титьенс О., Прандтль Л. Гидро- и аэромеханика. — М. - Л. : ГТТИ , 1933. — Т. 1. — 224 с.
  • Трусделл К. Очерки по истории механики . — М. — Ижевск: Институт компьютерных исследований, 2002. — 316 с. — ISBN 5-93972-192-3 .
  • Фабер Т. Е. Гидроаэродинамика / Пер. from English under the editorship of А. А. Павельева. — М. : Постмаркет, 2001. — 560 с. — ISBN 5-901095-04-9 .
  • Чёрный Г. Г. Газовая динамика. — М. : Наука , 1988. — 424 с. — ISBN 5-02-013814-2 .
  • §182. Закон Бернулли // Элементарный учебник физики / Под ред. Г. С. Ландсберга . — М. : Наука , 1985. — Т. 1. Механика. Теплота. Молекулярная физика.
  • Darrigol O. Worlds of flow. A history of hydrodynamics from the Bernoullis to Prandtl. — Oxford: Oxford University Press, 2005. — 356 с. — ISBN 978-0-19-856843-8 .
  • Euler L. Continuation des recherches sur la théorie du mouvement des fluides // Mémoires de l'Académie royale des sciences et belles lettres. — Berlin, 1755 (1757). — Т. 11 . — С. 316-361 .
  • Truesdell, Clifford Ambrose. Rational fluid mechanics, 1687–1765. Editor's introduction to Euleri Opera omnia II 12 // Leonardi Euleri. Opera Omnia. — Lausanne: Auctoritate et Impensis, Societas Scientiarum Naturalium Helveticae, 1954. — Т. 12. — С. I—CXXV. — (II).

Links

  • Russian translation of the treatise of Daniel Bernoulli, in which Bernoulli's integral (law) first appears
Источник — https://ru.wikipedia.org/w/index.php?title=Закон_Бернулли&oldid=101130226


More articles:

  • Villar de la Encina
  • Field, Virginia
  • Mikulski, Barbara
  • Krasnodar (football club)
  • Mari Awanski
  • Converting Vegetarians
  • Campillo de Ranas
  • Sendejas de la Torre
  • Galve de Sorbe
  • Miedes de Attiens

All articles

Clever Geek | 2019