Clever Geek Handbook
📜 ⬆️ ⬇️

Asymptotic density

In number theory, asymptotic density is one of the characteristics that helps to estimate how large a subset of the set of natural numbers is.N {\ displaystyle \ mathbb {N}} \ mathbb {N} .

Intuitively, we feel that there are more “ odd ” numbers than squares ; however, the set of odd numbers is not really “larger” than the set of squares: both sets are infinite and countable , and thus can be brought into correspondence “one to one” with each other. Obviously, to formalize our intuitive concept, we need a better way.

If we randomly select a number from the set{one,2,...,n} {\ displaystyle \ {1,2, \ ldots, n \}} {\ displaystyle \ {1,2, \ ldots, n \}} , then the probability that it belongs to A will be equal to the ratio of the number of elements in the setA∩{one,2,...,n} {\ displaystyle A \ cap \ {1,2, \ ldots, n \}} {\ displaystyle A \ cap \ {1,2, \ ldots, n \}} to the number n . If this probability tends to a certain limit when n tends to infinity, this limit is called the asymptotic density A. We see that this concept can be considered as the probability of choosing a number from the set A. Indeed, asymptotic density (as well as some other types of density) is studied in probabilistic number theory ( English Probabilistic number theory ).

Asymptotic density differs, for example, from sequence density . The negative side of this approach is that the asymptotic density is not defined for all subsetsN {\ displaystyle \ mathbb {N}} \ mathbb {N} .

Content

  • 1 Definition
    • 1.1 Upper and lower asymptotic densities
  • 2 Examples
  • 3 References

Definition

SubsetA {\ displaystyle A}   positive numbers has an asymptotic densityα {\ displaystyle \ alpha}   where0⩽α⩽one {\ displaystyle 0 \ leqslant \ alpha \ leqslant 1}   if the limit of the ratio of the number of elementsA {\ displaystyle A}   not exceedingn {\ displaystyle n}   ton {\ displaystyle n}   atn→∞ {\ displaystyle n \ to \ infty}   exists and is equalα {\ displaystyle \ alpha}   .

More strictly, if we define for any natural numbern {\ displaystyle n}   counting functiona(n) {\ displaystyle a (n)}   as the number of elementsA {\ displaystyle A}   not exceedingn {\ displaystyle n}   , then the equality of the asymptotic density of the setA {\ displaystyle A}   the numberα {\ displaystyle \ alpha}   exactly means that

limn→+∞a(n)n=α{\ displaystyle \ lim \ limits _ {n \ to + \ infty} {\ frac {a (n)} {n}} = \ alpha}   .

Upper and Lower Asymptotic Density

Let beA {\ displaystyle A}   Is a subset of the set of natural numbersN={one,2,...}. {\ displaystyle \ mathbb {N} = \ {1,2, \ ldots \}.}   For anyonen∈N {\ displaystyle n \ in \ mathbb {N}}   putA(n)={one,2,...,n}∩A {\ displaystyle A (n) = \ {1,2, \ ldots, n \} \ cap A}   anda(n)=|A(n)| {\ displaystyle a (n) = | A (n) |}   .

We determine the upper asymptotic densityd¯(A) {\ displaystyle {\ overline {d}} (A)}   manyA {\ displaystyle A}   as

d¯(A)=lim supn→∞a(n)n{\ displaystyle {\ overline {d}} (A) = \ limsup _ {n \ rightarrow \ infty} {\ frac {a (n)} {n}}}  

where lim sup is the partial limit of the sequence .d¯(A) {\ displaystyle {\ overline {d}} (A)}   also known as upper densityA. {\ displaystyle A.}  

We similarly defined_(A) {\ displaystyle {\ underline {d}} (A)}   lower asymptotic densityA {\ displaystyle A}   as

d_(A)=lim infn→∞a(n)n{\ displaystyle {\ underline {d}} (A) = \ liminf _ {n \ rightarrow \ infty} {\ frac {a (n)} {n}}}  

Will talk,A {\ displaystyle A}   has an asymptotic densityd(A) {\ displaystyle d (A)}   , ifd_(A)=d¯(A) {\ displaystyle {\ underline {d}} (A) = {\ overline {d}} (A)}   . In this case, we will assumed(A)=d¯(A). {\ displaystyle d (A) = {\ overline {d}} (A).}  

This definition can be reformulated:

d(A)=limn→∞a(n)n{\ displaystyle d (A) = \ lim _ {n \ rightarrow \ infty} {\ frac {a (n)} {n}}}  

if the limit exists and is finite.

A slightly weaker concept of density = upper Banach density ; takeA⊆N {\ displaystyle A \ subseteq \ mathbb {N}}   , defined∗(A) {\ displaystyle d ^ {*} (A)}   as

d∗(A)=lim supN-M→∞|A⋂{M,M+one,...,N}|N-M+one{\ displaystyle d ^ {*} (A) = \ limsup _ {NM \ rightarrow \ infty} {\ frac {| A \ bigcap \ {M, M + 1, ..., N \} |} {N- M + 1}}}  

If we write a subsetN {\ displaystyle \ mathbb {N}}   as an increasing sequence

A={aone<a2<...<an<...;n∈N}{\ displaystyle A = \ {a_ {1} <a_ {2} <\ ldots <a_ {n} <\ ldots; n \ in \ mathbb {N} \}}  

then

d_(A)=lim infn→∞nan,{\ displaystyle {\ underline {d}} (A) = \ liminf _ {n \ rightarrow \ infty} {\ frac {n} {a_ {n}}},}  
d¯(A)=lim supn→∞nan{\ displaystyle {\ overline {d}} (A) = \ limsup _ {n \ rightarrow \ infty} {\ frac {n} {a_ {n}}}}  

andd(A)=limn→∞nan {\ displaystyle d (A) = \ lim _ {n \ rightarrow \ infty} {\ frac {n} {a_ {n}}}}   if limit exists.

Examples

  • Obviously, d (N {\ displaystyle \ mathbb {N}}   ) = 1.
  • If d ( A ) exists for some set A , then for its complement we have d ( A c ) = 1 - d ( A ).
  • For any finite set of positive numbers F, we have d (F) = 0.
  • IfA={n2;n∈N} {\ displaystyle A = \ {n ^ {2}; n \ in \ mathbb {N} \}}   Is the set of all squares, then d (A) = 0.
  • IfA={2n;n∈N} {\ displaystyle A = \ {2n; n \ in \ mathbb {N} \}}   Is the set of all even numbers, then d (A) = 1. Similarly, for any arithmetic progressionA={an+b;n∈N} {\ displaystyle A = \ {an + b; n \ in \ mathbb {N} \}}   we get d (A) = 1 / a .
  • For the set P of all primes , we get d (P) = 0 (see Theorem on the distribution of primes ).
  • The set of all squareless numbers has a density6π2 {\ displaystyle {\ tfrac {6} {\ pi ^ {2}}}}  
  • The density of the set of excess numbers is between 0.2474 and 0.2480.
  • A bunch ofA=⋃n=0∞{22n,...,22n+one-one} {\ displaystyle A = \ bigcup \ limits _ {n = 0} ^ {\ infty} \ {2 ^ {2n}, \ ldots, 2 ^ {2n + 1} -1 \}}   numbers, whose binary representation contains an odd number of digits, is an example of a set that does not have asymptotic density, since the upper density is
d¯(A)=limm→∞one+22+⋯+22m22m+one-one=limm→∞22m+2-one3(22m+one-one)=23,{\ displaystyle {\ overline {d}} (A) = \ lim _ {m \ rightarrow \ infty} {\ frac {1 + 2 ^ {2} + \ cdots + 2 ^ {2m}} {2 ^ {2m +1} -1}} = \ lim _ {m \ rightarrow \ infty} {\ frac {2 ^ {2m + 2} -1} {3 (2 ^ {2m + 1} -1)}} = {\ frac {2} {3}} \ ,,}  
while lower
d_(A)=limm→∞one+22+⋯+22m22m+2-one=limm→∞22m+2-one3(22m+2-one)=one3.{\ displaystyle {\ underline {d}} (A) = \ lim _ {m \ rightarrow \ infty} {\ frac {1 + 2 ^ {2} + \ cdots + 2 ^ {2m}} {2 ^ {2m +2} -1}} = \ lim _ {m \ rightarrow \ infty} {\ frac {2 ^ {2m + 2} -1} {3 (2 ^ {2m + 2} -1)}} = {\ frac {1} {3}} \ ,.}  

Links

Source - https://ru.wikipedia.org/w/index.php?title=Asymptotic_density&oldid=92340283


More articles:

  • Ganyang, Emil
  • Anosovo (Novoduginsky District)
  • Agag
  • XXX Century
  • Hodgson Ralph
  • Museum of Contemporary Art (Paris)
  • Prigorevskoye Rural Settlement
  • History of the Khazars (chronology)
  • Temple of the Descent of the Holy Spirit on the Apostles (Tula)
  • Katerinopolsky district

All articles

Clever Geek | 2019