Clever Geek Handbook
📜 ⬆️ ⬇️

Majorization

Majorization is a mathematical term from set theory .

Definition

Let beX={xone,x2,...,xn},Y={yone,y2,...,yn} {\ displaystyle X = \ {x_ {1}, x_ {2}, \ ldots, x_ {n} \}, Y = \ {y_ {1}, y_ {2}, \ ldots, y_ {n} \} }   wherexone⩾x2⩾...⩾xn,yone⩾y2⩾...⩾yn {\ displaystyle x_ {1} \ geqslant x_ {2} \ geqslant \ ldots \ geqslant x_ {n}, y_ {1} \ geqslant y_ {2} \ geqslant \ ldots \ geqslant y_ {n}}   .

They say that manyX {\ displaystyle X}   majorizes a lotY {\ displaystyle Y}   (indicated byX≻Y {\ displaystyle X \ succ Y}   ) if the following is true:

for anyonek=one...n-one {\ displaystyle k = 1 \ ldots n-1}   ,∑i=onekxi⩾∑i=onekyi {\ displaystyle \ sum _ {i = 1} ^ {k} x_ {i} \ geqslant \ sum _ {i = 1} ^ {k} y_ {i}}   ; and∑i=onenxi=∑i=onenyi {\ displaystyle \ sum _ {i = 1} ^ {n} x_ {i} = \ sum _ {i = 1} ^ {n} y_ {i}}  

If the last equality is replaced by a less strong condition∑i=onenxi⩾∑i=onenyi {\ displaystyle \ sum _ {i = 1} ^ {n} x_ {i} \ geqslant \ sum _ {i = 1} ^ {n} y_ {i}}   thenX {\ displaystyle X}   lax majorizesY {\ displaystyle Y}   .

Majorization can be generalized to the case of disordered sets of numbers. A bunch ofX {\ displaystyle X}   majorizes a lotY {\ displaystyle Y}   if nonincreasing permutationX {\ displaystyle X}   majorizes non-increasing permutationY {\ displaystyle Y}   .

Examples

{8,7,one}≻{6,5,5}{\ displaystyle \ {8,7,1 \} \ succ \ {6,5,5 \}}   , as8⩾6,8+7⩾6+5,8+7+one=6+5+5 {\ displaystyle 8 \ geqslant 6, \ 8 + 7 \ geqslant 6 + 5, \ 8 + 7 + 1 = 6 + 5 + 5}  

{3,2}≻{3,2}{\ displaystyle \ {3,2 \} \ succ \ {3,2 \}}   , as3⩾3,3+2=3+2 {\ displaystyle 3 \ geqslant 3, \ 3 + 2 = 3 + 2}  

Generally, for anyxone⩾x2⩾...⩾xn {\ displaystyle x_ {1} \ geqslant x_ {2} \ geqslant \ ldots \ geqslant x_ {n}}   the following is true:

{xone+x2+...+xn,0,0,...,0⏟n-one}≻{xone,x2,...,xn}≻{xone+...+xnn,xone+...+xnn,...;xone+...+xnn⏟n}{\ displaystyle \ {x_ {1} + x_ {2} + \ ldots + x_ {n}, \ underbrace {0,0, \ ldots, 0} _ {n-1} \} \ succ \ {x_ {1 }, x_ {2}, \ ldots, x_ {n} \} \ succ \ {\ underbrace {{\ frac {x_ {1} + \ ldots + x_ {n}} {n}}, {\ frac {x_ {1} + \ ldots + x_ {n}} {n}}, \ ldots; {\ frac {x_ {1} + \ ldots + x_ {n}} {n}}} _ {n} \}}  

Muirhead Inequality

Let beFone {\ displaystyle F_ {1}}   - monomial symmetrizationxoneαone...xnαn {\ displaystyle x_ {1} ^ {\ alpha _ {1}} \ ldots x_ {n} ^ {\ alpha _ {n}}}   ,F2 {\ displaystyle F_ {2}}   - monomial symmetrizationxoneβone...xnβn {\ displaystyle x_ {1} ^ {\ beta _ {1}} \ ldots x_ {n} ^ {\ beta _ {n}}}   . If{αone;...;αn}≻{βone;...;βn} {\ displaystyle \ {\ alpha _ {1}; \ ldots; \ alpha _ {n} \} \ succ \ {\ beta _ {1}; \ ldots; \ beta _ {n} \}}   then for all non-negativexone,...,xn {\ displaystyle x_ {1}, \ dots, x_ {n}}   inequality holdsFone(αone,...αn)⩾F2(βone,...βn) {\ displaystyle F_ {1} (\ alpha _ {1}, \ ldots \ alpha _ {n}) \ geqslant F_ {2} (\ beta _ {1}, \ ldots \ beta _ {n})}   .


Source - https://ru.wikipedia.org/w/index.php?title= Majorization&oldid = 91753364


More articles:

  • Hemmond, David
  • Release
  • Didusenko, Mikhail Alexandrovich
  • English Sound
  • Tsap-Zarap
  • Presidential Council for the Development of Local Government
  • The Witcher World
  • RP-46
  • Altavista (album)
  • ANZUS

All articles

Clever Geek | 2019