Let be {\ displaystyle X = \ {x_ {1}, x_ {2}, \ ldots, x_ {n} \}, Y = \ {y_ {1}, y_ {2}, \ ldots, y_ {n} \} } where {\ displaystyle x_ {1} \ geqslant x_ {2} \ geqslant \ ldots \ geqslant x_ {n}, y_ {1} \ geqslant y_ {2} \ geqslant \ ldots \ geqslant y_ {n}} .
They say that many {\ displaystyle X} majorizes a lot {\ displaystyle Y} (indicated by {\ displaystyle X \ succ Y} ) if the following is true:
for anyone {\ displaystyle k = 1 \ ldots n-1} , {\ displaystyle \ sum _ {i = 1} ^ {k} x_ {i} \ geqslant \ sum _ {i = 1} ^ {k} y_ {i}} ; and {\ displaystyle \ sum _ {i = 1} ^ {n} x_ {i} = \ sum _ {i = 1} ^ {n} y_ {i}} If the last equality is replaced by a less strong condition {\ displaystyle \ sum _ {i = 1} ^ {n} x_ {i} \ geqslant \ sum _ {i = 1} ^ {n} y_ {i}} then {\ displaystyle X} lax majorizes {\ displaystyle Y} .
Majorization can be generalized to the case of disordered sets of numbers. A bunch of {\ displaystyle X} majorizes a lot {\ displaystyle Y} if nonincreasing permutation {\ displaystyle X} majorizes non-increasing permutation {\ displaystyle Y} .
{\ displaystyle \ {8,7,1 \} \ succ \ {6,5,5 \}} , as {\ displaystyle 8 \ geqslant 6, \ 8 + 7 \ geqslant 6 + 5, \ 8 + 7 + 1 = 6 + 5 + 5}
{\ displaystyle \ {3,2 \} \ succ \ {3,2 \}} , as {\ displaystyle 3 \ geqslant 3, \ 3 + 2 = 3 + 2}
Generally, for any {\ displaystyle x_ {1} \ geqslant x_ {2} \ geqslant \ ldots \ geqslant x_ {n}} the following is true:
{\ displaystyle \ {x_ {1} + x_ {2} + \ ldots + x_ {n}, \ underbrace {0,0, \ ldots, 0} _ {n-1} \} \ succ \ {x_ {1 }, x_ {2}, \ ldots, x_ {n} \} \ succ \ {\ underbrace {{\ frac {x_ {1} + \ ldots + x_ {n}} {n}}, {\ frac {x_ {1} + \ ldots + x_ {n}} {n}}, \ ldots; {\ frac {x_ {1} + \ ldots + x_ {n}} {n}}} _ {n} \}}
Let be {\ displaystyle F_ {1}} - monomial symmetrization {\ displaystyle x_ {1} ^ {\ alpha _ {1}} \ ldots x_ {n} ^ {\ alpha _ {n}}} , {\ displaystyle F_ {2}} - monomial symmetrization {\ displaystyle x_ {1} ^ {\ beta _ {1}} \ ldots x_ {n} ^ {\ beta _ {n}}} . If {\ displaystyle \ {\ alpha _ {1}; \ ldots; \ alpha _ {n} \} \ succ \ {\ beta _ {1}; \ ldots; \ beta _ {n} \}} then for all non-negative {\ displaystyle x_ {1}, \ dots, x_ {n}} inequality holds {\ displaystyle F_ {1} (\ alpha _ {1}, \ ldots \ alpha _ {n}) \ geqslant F_ {2} (\ beta _ {1}, \ ldots \ beta _ {n})} .