Schur's theorem gives a pointwise condition on the Riemannian metric, which guarantees the constancy of its curvature. Proved by Friedrich Schur in 1886.
Formulation
Let be - connected (possibly not complete ) Riemannian manifold of dimension . If the sectional curvature where there is a plane in depends only on then there is a space of constant curvature.
Literature
- with. 192, Sh. Kobayashi, K. Nomizu, Basics of Differential Geometry (inaccessible link)
- Schur F. Über den Zusammenhang der Räume konstanter Krümmungsmasses mit den projektiven Räuraen , Mathematische Annalen , 1886. 27, S. 537-567.