Clever Geek Handbook
📜 ⬆️ ⬇️

Artin module

An Artin module is a module above a ring in which the following condition for breaking a decreasing chain is fulfilled . Symbolically, the moduleM {\ displaystyle M} M Artins, if any sequence of its submodules:

Mone⊃M2⊃...⊃Mi⊃...{\ displaystyle M_ {1} \ supset M_ {2} \ supset \ ldots \ supset M_ {i} \ supset \ ldots} {\ displaystyle M_ {1} \ supset M_ {2} \ supset \ ldots \ supset M_ {i} \ supset \ ldots}

stabilizes, i.e. starting from somen {\ displaystyle n} n done:

Mn=Mn+one=...{\ displaystyle M_ {n} = M_ {n + 1} = \ ldots} {\ displaystyle M_ {n} = M_ {n + 1} = \ ldots} .

This statement is equivalent to the fact that in any nonempty set of submodulesM {\ displaystyle M} M there is a minimal element .

If aM {\ displaystyle M} M - Artins, then any of its submodules and any of its factor modules are Artinian. Conversely, if the submoduleN⊂M {\ displaystyle N \ subset M} N \ subset M and factor moduleM/N {\ displaystyle M / N} M / N Artinian, then the module itselfM {\ displaystyle M} M Artins.

They are named after Emil Artin , along with similar general algebraic structures with conditions for breaking off decreasing chains ( Artinian group , Artinian ring ), and dual “Noetherian” structures with a condition for breaking off increasing chains ( Noetherian module , Noetherian group , Noetherian ring ). In particular, the associative ringA {\ displaystyle A} A with a single element is called Artinian if it is ArtinianA {\ displaystyle A} A -module (satisfies the condition of breaking off decreasing chains for ideals , for the non-commutative case, respectively, left or right ).

Literature

  • Atya M., MacDonald I. Introduction to commutative algebra. - M .: Mir, 1972.
  • Zarissky O., Samuel R. Commutative algebra. - M: IL, 1963.
  • Leng S. Algebra. - M: Mir, 1968.
Source - https://ru.wikipedia.org/w/index.php?title=Artin_module&oldid=97589719


More articles:

  • Jahannam
  • International Socialist Left (Germany)
  • Eupen
  • Bolshe-Dorokhovo
  • Zagot, Mikhail Alexandrovich
  • Jaguar (Tank)
  • Alpine Angliot
  • Kevorkov, Sergey Nikitich
  • Martin Fromenek
  • Ponomarev, Alexander Semenovich

All articles

Clever Geek | 2019